Question 7 Exercise 8.2
Solutions of Question 7 of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 7(i)
Rewrite in term of an expression containing only cosines to the power 1: sin2αcos2α
Solution.
sin2αcos2α=(1−cos2α2)(1+cos2α2)=14(1−cos22α)=14(1−1+cos4α2)=14(2−1−cos4α2)=1−cos4α8
Question 7(ii)
Rewrite in terms of an expression containing only cosine to the power 1: sin4αcos2α
Solution.
sin4αcos2α=(1−cos2α2)2(1+cos2α2)=14(1−cos2α2)2(1+cos2α)=116(1−cos2α)2(1+cos2α)=116(1−2cos2α+cos22α)(1+cos2α)=116(1−2cos2α+cos22α+cos2α−2cos32α+cos22α)=116(1−cos2α+2cos22α−2cos32α)=116(1−cos2α+2(1+cos4α2)−2cos2α(1+cos4α2))=116(1−cos2α+1+cos4α−cos2α(1+cos4α))=116(1−cos2α+1+cos4α−cos2α−cos2αcos4α)=116(2−2cos2α+cos4α−cos2αcos4α)
Question 7(iii)
Rewrite in terms of an expression containing only cosine to the power 1: sin4αcos4α
Solution.
sin4αcos4α=(1−cos2α2)2(1+cos2α2)2=116(1−cos22α)2=116(1−1+cos4α2)2=116(2−1−cos4α2)=116(1−cos4α)2=164(1+cos24α−2cos4α)=164(1+(1+cos8α2)−2cos4α)=1128(3+cos8α−4cos4α)
Go to