Question 3(i, ii, iii, iv & v) Exercise 8.3

Solutions of Question 3(i, ii, iii, iv & v) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Prove the identity cos(α+β)cos(αβ)=1tanαtanβ1+tanαtanβ

Solution.

RHS=1tanαtanβ1+tanαtanβ=1sinαcosαsinβcosβ1+sinαcosαsinβcosβ=cosαcosβsinαsinβcosαcosβcosαcosβ+sinαsinβcosαcosβ=cos(αβ)cos(α+β)=LHS GOOD

Prove the identity 6cos8usin2usin(6u)=sin10usin6u+3

Solution.

RHS=6cos8usin2usin(6u)=6cos8usin2usin6u=6cos8usin2usin6u=3(sin(10u)sin(2u))sin6u=3sin10usin6u+3=LHS

Prove the identity 4cos4vsin3v=2(sin7vsinv)

Solution.

RHS=4cos4vsin3v=22cos4vsin3v=2(sin(3v+4v)sin(3v4v))=2(sin7vsin(v))=2(sin7v+sinv)=2(sin7vsinv)(since \sin(-v) = -\sin v)=LHS

Prove the identity sin3θ+sinθ=4cos2θsinθ

Solution.

LHS=sin3θ+sinθ=2sin(3θ+θ2)cos(3θθ2)=2sin(4θ2)cos(2θ2)=2sin2θcosθ=2(2sinθcosθ)sinθ=4cos2θsinθ=RHS GOOD

Prove the identity cos3x+cosx=2cosx(cos2x).

Solution.

LHS=cos3x+cosx=2cos(3x+x2)cos(3xx2)=2cos(4x2)cos(2x2)=2cos2xcosx=2cosx(cos2x)=RHS GOOD