Question 3(i, ii, iii, iv & v) Exercise 8.3
Solutions of Question 3(i, ii, iii, iv & v) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Questio 3(i)
Prove the identity cos(α+β)cos(α−β)=1−tanαtanβ1+tanαtanβ
Solution.
RHS=1−tanαtanβ1+tanαtanβ=1−sinαcosαsinβcosβ1+sinαcosαsinβcosβ=cosαcosβ−sinαsinβcosαcosβcosαcosβ+sinαsinβcosαcosβ=cos(α−β)cos(α+β)=LHS
Questio 3(ii)
Prove the identity 6cos8usin2usin(−6u)=−sin10usin6u+3
Solution.
RHS=6cos8usin2usin(−6u)=6cos8usin2u−sin6u=−6cos8usin2usin6u=−3(sin(10u)−sin(2u))sin6u=−3sin10usin6u+3=LHS
Questio 3(iii)
Prove the identity 4cos4vsin3v=2(sin7v−sinv)
Solution.
RHS=4cos4vsin3v=2⋅2cos4vsin3v=2⋅(sin(3v+4v)−sin(3v−4v))=2⋅(sin7v−sin(−v))=2(sin7v+sinv)=2(sin7v−sinv)(since \sin(-v) = -\sin v)=LHS
Questio 3(iv)
Prove the identity sin3θ+sinθ=4cos2θsinθ
Solution.
LHS=sin3θ+sinθ=2sin(3θ+θ2)cos(3θ−θ2)=2sin(4θ2)cos(2θ2)=2sin2θcosθ=2(2sinθcosθ)sinθ=4cos2θsinθ=RHS
Questio 3(v)
Prove the identity cos3x+cosx=2cosx(cos2x).
Solution.
LHS=cos3x+cosx=2cos(3x+x2)cos(3x−x2)=2cos(4x2)cos(2x2)=2cos2xcosx=2cosx(cos2x)=RHS
Go to