Question 3(vi, vii, viii, ix & x) Exercise 8.3

Solutions of Question 3(vi, vii, viii, ix & x) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Prove the identity 2tanycos3y=secy(sin4ysin2y)

Solution.

LHS=2tanycos3y=2sinycosycos3y=secy(2cos3ysiny)=secy(sin(3y+y)sin(3yy))=secy(sin4ysin2y)=RHS GOOD

Prove the identity sin6β+sin4βsin6βsin4β=tan5βcotβ

Solution.

LHS=sin6β+sin4βsin6βsin4β=2sin(6β+4β2)cos(6β4β2)2cos(6β+4β2)sin(6β4β2)=sin5βcos5βsinβcosβ=tan5βcotβ=RHS GOOD

Prove the identity cot3θ+cotθcot3θcotθ=cos2θcotθ. m(

Solution.

LHS=cot3θ+cotθcot3θcotθ=cos3θsin3θ+cosθsinθcos3θsin3θcosθsinθ=cos3θsinθ+sin3θcosθsin3θsinθcos3θsinθsin3θcosθsin3θsinθ=sin3θcosθ+cos3θsinθ(sin3θcosθcos3θsinθ)=sin(3θ+θ)sin(3θθ)=sin4θsin2θ=2sin2θcos2θsin2θ=2cos2θ=RHS GOOD :!:

Correction:
The corrected version of the question can be stated as follows: cot3θ+cotθcot3θcotθ=2cos2θ

Prove the identity cos6x+cos8xsin6xsin4x=cotxcos7xsec5x

Solution.

LHS=cos6x+cos8xsin6xsin4x=2cos(6x+8x2)cos(6x8x2)2cos(6x+4x2)sin(6x4x2)=cos(7x)cos(x)cos(5x)sin(x)=cos7x1cos5xcosxsinx=cos7xsec5xcotx=RHS GOOD

Prove the identity cos2αcos4αsin2α+sin4α=tanα

Solution.

LHS=cos2αcos4αsin2α+sin4α=2sin(2α+4α2)sin(2α4α2)2sin(2α+4α2)cos(2α4α2)=sin3αsin(α)sin3αcosα=sinαcosα=tanα=RHS GOOD