Question 3(vi, vii, viii, ix & x) Exercise 8.3
Solutions of Question 3(vi, vii, viii, ix & x) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Questio 3(vi)
Prove the identity 2tanycos3y=secy(sin4y−sin2y)
Solution.
LHS=2tanycos3y=2⋅sinycosycos3y=secy(2cos3ysiny)=secy(sin(3y+y)−sin(3y−y))=secy(sin4y−sin2y)=RHS
Questio 3(vii)
Prove the identity sin6β+sin4βsin6β−sin4β=tan5βcotβ
Solution.
LHS=sin6β+sin4βsin6β−sin4β=2sin(6β+4β2)cos(6β−4β2)2cos(6β+4β2)sin(6β−4β2)=sin5βcos5βsinβcosβ=tan5βcotβ=RHS
Questio 3(viii)
Prove the identity cot3θ+cotθcot3θ−cotθ=−cos2θcotθ.
Solution.
LHS=cot3θ+cotθcot3θ−cotθ=cos3θsin3θ+cosθsinθcos3θsin3θ−cosθsinθ=cos3θsinθ+sin3θcosθsin3θsinθcos3θsinθ−sin3θcosθsin3θsinθ=sin3θcosθ+cos3θsinθ−(sin3θcosθ−cos3θsinθ)=sin(3θ+θ)−sin(3θ−θ)=−sin4θsin2θ=−2sin2θcos2θsin2θ=−2cos2θ=RHS
Correction:
The corrected version of the question can be stated as follows:
cot3θ+cotθcot3θ−cotθ=−2cos2θ
Questio 3(ix)
Prove the identity cos6x+cos8xsin6x−sin4x=cotxcos7xsec5x
Solution.
LHS=cos6x+cos8xsin6x−sin4x=2cos(6x+8x2)cos(6x−8x2)2cos(6x+4x2)sin(6x−4x2)=cos(7x)cos(−x)cos(5x)sin(x)=cos7x1cos5xcosxsinx=cos7xsec5xcotx=RHS
Questio 3(x)
Prove the identity cos2α−cos4αsin2α+sin4α=tanα
Solution.
LHS=cos2α−cos4αsin2α+sin4α=−2sin(2α+4α2)sin(2α−4α2)2sin(2α+4α2)cos(2α−4α2)=−sin3αsin(−α)sin3αcosα=sinαcosα=tanα=RHS
Go to