Question 3(xi, xii & xiii) Exercise 8.3

Solutions of Question 3(xi, xii & xiii) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Prove the identity 2cos2ucosusin2usinu=2cos3u

Solution.

LHS=2cos2ucosusin2usinu=2(cos2usin2u)cosu2sinucosusinu=2cos3u2sin2ucosu=2cos3u=RHS

Prove the identity 2sin2ysin3y=cosycos5y

Solution.

LHS=2sin2ysin3y=cos(3y2y)cos(3y+2y)=cosycos5y=RHS

Prove the identity cos10x+cos6xcos6xcos10x=cot2xcot8x

Solution.

LHS=cos10x+cos6xcos6xcos10x=2cos(10x+6x2)cos(10x6x2)2sin(10x+6x2)sin(10x6x2)=cos8xcos2xsin8xsin2x=cot2xcot8x=RHS GOOD