Question 3(xi, xii & xiii) Exercise 8.3
Solutions of Question 3(xi, xii & xiii) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Questio 3(xi)
Prove the identity 2cos2ucosu−sin2usinu=2cos3u
Solution.
LHS=2cos2ucosu−sin2usinu=2(cos2u−sin2u)cosu−2sinucosusinu=2cos3u−2sin2ucosu=2cos3u=RHS
Questio 3(xii)
Prove the identity 2sin2ysin3y=cosy−cos5y
Solution.
LHS=2sin2ysin3y=cos(3y−2y)−cos(3y+2y)=cosy−cos5y=RHS
Questio 3(xiii)
Prove the identity cos10x+cos6xcos6x−cos10x=cot2xcot8x
Solution.
LHS=cos10x+cos6xcos6x−cos10x=2cos(10x+6x2)cos(10x−6x2)−2sin(10x+6x2)sin(10x−6x2)=−cos8xcos2xsin8xsin2x=cot2xcot8x=RHS
Go to