Question 4 Exercise 8.3

Solutions of Question 4 of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Prove that: cos80cos60cos40cos20=116

Solution. LHS=cos80cos60cos40cos20=cos80(12)cos40cos20=12(cos80cos40)cos20=14(2cos80cos40)cos20=14(cos(80+40)+cos(8040))cos20=14(cos120+cos40)cos20=14(12+cos40)cos20=18cos20+14cos40cos20=18cos20+18(2cos40cos20)=18cos20+18(cos(40+20)+cos(4020))=18cos20+18(cos60+cos20)=18cos20+18(12+cos20)=18cos20+116+18cos20=116=RHS GOOD

Prove that: sin70sin50sin30sin10=116

Solution.

Do youself as above.

Prove that: sinπ9sin2π9sin3π9sin4π9=316

Solution.

LHS==sinπ9sin2π9sin3π9sin4π9=sin1809sin2(180)9sin3(180)9sin4(180)9π=180=sin20sin40sin60sin80=sin20sin4032sin80=32sin80sin40sin20=34(2sin80sin40)sin20=34(cos(80+40)cos(8040))sin20=34(cos120cos40)sin20=34(12cos40)sin20=38sin20+34cos40sin20=38sin20+38(2cos40sin20)=38sin20+38(sin(40+20)sin(4020))=38sin20+38(sin60sin20)=38sin20+38(32sin20)=38sin20+31638sin20=316=RHS