Question 4 Exercise 8.3
Solutions of Question 4 of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 4(i)
Prove that: cos80∘cos60∘cos40∘cos20∘=116
Solution.
LHS=cos80∘cos60∘cos40∘cos20∘=cos80∘(12)cos40∘cos20∘=12(cos80∘cos40∘)cos20∘=14(2cos80∘cos40∘)cos20∘=14(cos(80∘+40∘)+cos(80∘−40∘))cos20∘=14(cos120∘+cos40∘)cos20∘=14(−12+cos40∘)cos20∘=−18cos20∘+14cos40∘cos20∘=−18cos20∘+18(2cos40∘cos20∘)=−18cos20∘+18(cos(40+20)+cos(40−20))=−18cos20∘+18(cos60+cos20)=−18cos20∘+18(12+cos20)=−18cos20∘+116+18cos20∘=116=RHS
Question 4(ii)
Prove that: sin70∘sin50∘sin30∘sin10∘=116
Solution.
Do youself as above.
Question 4(iii)
Prove that: sinπ9sin2π9sin3π9sin4π9=316
Solution.
LHS==sinπ9sin2π9sin3π9sin4π9=sin180∘9sin2(180∘)9sin3(180∘)9sin4(180∘)9∵π=180∘=sin20∘sin40∘sin60∘sin80∘=sin20∘sin40∘√32sin80∘=√32sin80∘sin40∘sin20∘=−√34(−2sin80∘sin40∘)sin20∘=−√34(cos(80+40)−cos(80−40))sin20∘=−√34(cos120∘−cos40∘)sin20∘=−√34(−12−cos40∘)sin20∘=√38sin20∘+√34cos40∘sin20∘=√38sin20∘+√38(2cos40∘sin20∘)=√38sin20∘+√38(sin(40+20)−sin(40−20))=√38sin20∘+√38(sin60∘−sin20∘)=√38sin20∘+√38(√32−sin20∘)=√38sin20∘+316−√38sin20∘=316=RHS
Go to