Question 5 and 6, Review Exercise
Solutions of Question 5 and 6 of Review Exercise of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 5
Find the values of tanθ when tan(θ−45∘)=13.
Solution.
tanθ−tan45∘1+tanθ⋅tan45∘=13⟹tanθ−11+tanθ=13⟹3tanθ−3=1+tanθ⟹2tanθ=4⟹tanθ=2
Question 6(i)
If sin(α+θ)=2cos(α−θ) prove that tanα=2−tanθ1−2tanθ.
Solution.
sin(α+θ)=2cos(α−θ)⟹sinαcosθ+cosαsinθ=2(cosαcosθ+sinαsinθ)⟹sinαcosθ+cosαsinθ=2cosαcosθ+2sinαsinθ
Divided both sides by cosαcosθ
sinαcosθcosαcosθ+cosαsinθcosαcosθ=2cosαcosθcosαcosθ+2sinαsinθcosαcosθ⟹tanα+tanθ=2+2tanαtanθ⟹tanα(1−2tanθ)=2−tanθ⟹tanα=2−tanθ1−2tanθ
Question 6(ii)
If sin(α−θ)=cos(α+θ) prove that tanα=1.
Solution.
Given: sin(α−θ)=cos(α+θ)⟹sinαcosθ−cosαsinθ=cosαcosθ−sinαsinθ Dividing both sides by cosαcosθ sinαcosθcosαcosθ−cosαsinθcosαcosθ=cosαcosθcosαcosθ+sinαsinθcosαcosθ⟹tanα−tanθ=1−tanαtanθ⟹tanα+tanαtanθ=1+tanθ⟹tanα(1+tanθ)=1+tanθ⟹tanα=1+tanθ1+tanθ⟹tanα=1
Alternative Method:
sin(α−θ)=cos(α+θ)⟹sinαcosθ−cosαsinθ=cosαcosθ−sinαsinθ⟹sinαcosθ+sinαsinθ=cosαcosθ+cosαsinθ⟹sinα(cosθ+sinθ)=cosα(cosθ+sinθ)⟹sinαcosα=1⟹tanα=1
Go to