Question 5 and 6, Review Exercise

Solutions of Question 5 and 6 of Review Exercise of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Find the values of tanθ when tan(θ45)=13.

Solution.

tanθtan451+tanθtan45=13tanθ11+tanθ=133tanθ3=1+tanθ2tanθ=4tanθ=2 GOOD

If sin(α+θ)=2cos(αθ) prove that tanα=2tanθ12tanθ.

Solution.

sin(α+θ)=2cos(αθ)sinαcosθ+cosαsinθ=2(cosαcosθ+sinαsinθ)sinαcosθ+cosαsinθ=2cosαcosθ+2sinαsinθ Divided both sides by cosαcosθ sinαcosθcosαcosθ+cosαsinθcosαcosθ=2cosαcosθcosαcosθ+2sinαsinθcosαcosθtanα+tanθ=2+2tanαtanθtanα(12tanθ)=2tanθtanα=2tanθ12tanθ GOOD

If sin(αθ)=cos(α+θ) prove that tanα=1.

Solution.

Given: sin(αθ)=cos(α+θ)sinαcosθcosαsinθ=cosαcosθsinαsinθ Dividing both sides by cosαcosθ sinαcosθcosαcosθcosαsinθcosαcosθ=cosαcosθcosαcosθ+sinαsinθcosαcosθtanαtanθ=1tanαtanθtanα+tanαtanθ=1+tanθtanα(1+tanθ)=1+tanθtanα=1+tanθ1+tanθtanα=1

Alternative Method:
sin(αθ)=cos(α+θ)sinαcosθcosαsinθ=cosαcosθsinαsinθsinαcosθ+sinαsinθ=cosαcosθ+cosαsinθsinα(cosθ+sinθ)=cosα(cosθ+sinθ)sinαcosα=1tanα=1 GOOD