Question 7, Review Exercise

Solutions of Question 7 of Review Exercise of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Show that: 4sin2θcosθcos3θ+cosθ=tan2θtanθ

Solution.

LHS=4sin2θcosθcos3θ+cosθ=4sinθsinθcosθ4cos3θ3cosθ+cosθ=2sin2θsinθ4cos3θ2cosθ=2sin2θsinθ2cosθ(2cos2θ1)=sin2θsinθcosθcos2θ=tan2θtanθ=RHS

Show that: sin10θsin4θsin4θ+sin2θ=cos7θsecθ

Solution.

LHS=sin10θsin4θsin4θ+sin2θ=2cos(10θ+4θ2)sin(10θ4θ2)2sin(4θ+2θ2)cos(4θ2θ2)=2cos7θsin3θ2sin3θcosθ=cos7θsecθ=RHS

Show that: If sin(αθ)=cos(α+θ) prove that tanα=1.

Solution.

Given: \begin{align*} & \sin (\alpha - \theta) = \cos (\alpha + \theta) \\ \implies & \sin \alpha \cos \theta - \cos \alpha \sin \theta = \cos \alpha \cos \theta - \sin \alpha \sin \theta\end{align*} Dividing both sides by cosαcosθ \begin{align*} & \frac{\sin \alpha \cos \theta}{\cos \alpha \cos \theta}-\frac{\cos \alpha \sin \theta}{\cos \alpha \cos \theta}=\frac{\cos \alpha \cos \theta}{\cos \alpha \cos \theta}+\frac{\sin \alpha \sin \theta}{\cos \alpha \cos \theta} \\ \implies & \tan \alpha -\tan \theta= 1-\tan \alpha \tan \theta\\ \implies & \tan \alpha +\tan \alpha \tan \theta =1+\tan \theta\\ \implies & \tan \alpha(1 + \tan \theta) =1+\tan \theta\\ \implies & \tan \alpha = \frac{1+ \tan \theta}{1+ \tan \theta}\\ \implies & \tan \alpha =1 \end{align*}

Alternative Method:
\begin{align*} & \sin (\alpha - \theta)= \cos (\alpha + \theta) \\ \implies &\sin \alpha \cos \theta - \cos \alpha \sin \theta = \cos \alpha \cos \theta - \sin \alpha \sin \theta \\ \implies &\sin \alpha \cos \theta + \sin \alpha \sin \theta = \cos \alpha \cos \theta + \cos \alpha \sin \theta \\ \implies &\sin \alpha (\cos \theta + \sin \theta) = \cos \alpha (\cos \theta + \sin \theta) \\ \implies & \frac{\sin \alpha}{\cos \alpha} = 1\\ \implies &\tan \alpha = 1 \end{align*} GOOD