Question 8, Review Exercise
Solutions of Question 8 of Review Exercise of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 8(i)
Prove that: √cos(90∘+x)sec(−x)tan(180∘−x)sec(360∘−x)sin(180∘+x)cot(90∘−x)=i.
Solution.
LHS=√cos(90∘+x)sec(−x)tan(180∘−x)sec(360∘−x)sin(180∘+x)cot(90∘−x)=√−sinx(secx)(−tanx)secx(−sinx)tanx=√−1=i=RHS
Question 8(ii)
Prove that: tan2(3π2−x)sin2(π+x)sin(2π−x)cos2(π−x)cot(3π2+x)=cosx.
Solution.
LHS=tan2(3π2−x)sin2(π+x)sin(2π−x)cos2(π−x)cot(3π2+x)=(cotx)2(−sinx)2(−sinx)(−cosx)2(−tanx)=cot2(x)sin2(x)(−sinx)cos2(x)(−tanx)=cos2xsin2x⋅sin2x⋅sinxcos2x⋅sinxcosx=cosx1=cosx=RHS
Go to