Question 8, Review Exercise

Solutions of Question 8 of Review Exercise of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Prove that: cos(90+x)sec(x)tan(180x)sec(360x)sin(180+x)cot(90x)=i.

Solution.

LHS=cos(90+x)sec(x)tan(180x)sec(360x)sin(180+x)cot(90x)=sinx(secx)(tanx)secx(sinx)tanx=1=i=RHS

Prove that: tan2(3π2x)sin2(π+x)sin(2πx)cos2(πx)cot(3π2+x)=cosx.

Solution.

LHS=tan2(3π2x)sin2(π+x)sin(2πx)cos2(πx)cot(3π2+x)=(cotx)2(sinx)2(sinx)(cosx)2(tanx)=cot2(x)sin2(x)(sinx)cos2(x)(tanx)=cos2xsin2xsin2xsinxcos2xsinxcosx=cosx1=cosx=RHS