Question 10, Review Exercise

Solutions of Question 10 of Review Exercise of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Prove that: sin(16x)=16sin(x)cos(x)cos(2x)cos(4x)cos(8x)

Solution.

RHS=16sin(x)cos(x)cos(2x)cos(4x)cos(8x)=8(2sin(x)cos(x))cos(2x)cos(4x)cos(8x)=8sin2(x)cos(2x)cos(4x)cos(8x)=4(2sin2(x)cos(2x))cos(4x)cos(8x)=4sin4(x)cos(4x)cos(8x)=2(2sin4(x)cos(4x))cos(8x)=2sin8(x)cos(8x)=sin16(x)=LHS

Prove that: 1+cos2θsin2θcosθ=2cosθ2sinθ1.

Solution.

LHS=1+cos2θsin2θcosθ=1+cos2θsin2θ2sinθcosθcosθ=1sin2θ+cos2θcosθ(2sinθ1)=2cos2θcosθ(2sinθ1)=2cosθ2sinθ1=RHS

Prove that: cos3θcosθcos3θ+cosθ=2tan2θtan2θ1=2tan2θsec2θ2tan2θ

Solution. FIXME(statement is wrong) LHS=cos3θcosθcos3θ+cosθ=4cos3θ3cosθcosθ4cos3θ3cosθ+cosθ=4cos3θ4cosθ4cos3θ2cosθ=4cosθ(1cos2θ)2cosθ(2cos2θ1)=2sin2θ12cos2θ=2tan2θsec2θ2=RHS