Question 10, Review Exercise
Solutions of Question 10 of Review Exercise of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 10(i)
Prove that: sin(16x)=16sin(x)cos(x)cos(2x)cos(4x)cos(8x)
Solution.
RHS=16sin(x)cos(x)cos(2x)cos(4x)cos(8x)=8(2sin(x)cos(x))cos(2x)cos(4x)cos(8x)=8sin2(x)cos(2x)cos(4x)cos(8x)=4(2sin2(x)cos(2x))cos(4x)cos(8x)=4sin4(x)cos(4x)cos(8x)=2(2sin4(x)cos(4x))cos(8x)=2sin8(x)cos(8x)=sin16(x)=LHS
Question 10(ii)
Prove that: 1+cos2θsin2θ−cosθ=2cosθ2sinθ−1.
Solution.
LHS=1+cos2θsin2θ−cosθ=1+cos2θ−sin2θ2sinθcosθ−cosθ=1−sin2θ+cos2θcosθ(2sinθ−1)=2cos2θcosθ(2sinθ−1)=2cosθ2sinθ−1=RHS
Question 10(iii)
Prove that: cos3θ−cosθcos3θ+cosθ=2tan2θtan2θ−1=−2tan2θsec2θ−2tan2θ
Solution.
(statement is wrong)
LHS=cos3θ−cosθcos3θ+cosθ=4cos3θ−3cosθ−cosθ4cos3θ−3cosθ+cosθ=4cos3θ−4cosθ4cos3θ−2cosθ=−4cosθ(1−cos2θ)2cosθ(2cos2θ−1)=2sin2θ1−2cos2θ=2tan2θsec2θ−2=RHS
Go to