Question 3, Exercise 9.1

Solutions of Question 3 of Exercise 9.1 of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Find domain and range: y=7cos4x

Solution.

AS \begin{align*} & -1\leq \cos 4x \leq 1 \,\, \forall \,\, x\in \mathbb{R} \\ \implies & -7\leq 7 \cos 4x \leq 7 \\ \end{align*} Thus domain =],[=R

Range =[7,7].

Find domain and range: y=cosx3

Solution.

AS 1cosx31xR Thus domain =],[=R

Range =[1,1].

Find domain and range: y=sin2x3

Solution.

AS 1sin2x31xR Thus domain =],[=R

Range =[1,1].

Find domain and range: y=7cotπ2x

Solution.

Let θ=π2x. Then y=7cotθ

Domain of y={θ:θR and θnπ,n is integer}

Range of y=R

As \begin{align*} & \theta \neq n\pi \\ \implies & \dfrac{\pi}{2} x \neq n\pi \\ \implies & x \neq 2n \end{align*}

Hence domain of y={x:xR and x2n,n is integer}

Range of y=R. GOOD

Find domain and range: y=4tanπx.

Solution.

Let θ=πx. Then y=4tanθ

Domain of y={θ:θR and θ(2n+1)π2,n is integer}

Range of y=R

As \begin{align*} & \theta \neq (2n+1)\frac{\pi}{2} \\ \implies & \pi x \neq (2n+1)\frac{\pi}{2} \\ \implies & x \neq \frac{2n+1}{2} \end{align*}

Hence domain of y={x:xR and x2n+12,n is integer}

Range of y=R. GOOD

Find domain and range: y=Cosec4x

Solution.

Let θ=4x. Then y=Cosecθ

Domain of y={θ:θR and θnπ,n is integer}

Range: y1 and y1.

As \begin{align*} & \theta \neq n\pi \\ \implies & 4 x \neq n\pi \\ \implies & x \neq \frac{n \pi}{4} \end{align*}

Hence domain of y={x:xR and xnπ4,n is integer}

Range: y1 and y1. GOOD