Question 3, Exercise 9.1

Solutions of Question 3 of Exercise 9.1 of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Find domain and range: y=7cos4x

Solution.

AS 1cos4x1xR77cos4x7 Thus domain =],[=R

Range =[7,7].

Find domain and range: y=cosx3

Solution.

AS 1cosx31xR Thus domain =],[=R

Range =[1,1].

Find domain and range: y=sin2x3

Solution.

AS 1sin2x31xR Thus domain =],[=R

Range =[1,1].

Find domain and range: y=7cotπ2x

Solution.

Let θ=π2x. Then y=7cotθ

Domain of y={θ:θR and θnπ,n is integer}

Range of y=R

As θnππ2xnπx2n

Hence domain of y={x:xR and x2n,n is integer}

Range of y=R. GOOD

Find domain and range: y=4tanπx.

Solution.

Let θ=πx. Then y=4tanθ

Domain of y={θ:θR and θ(2n+1)π2,n is integer}

Range of y=R

As θ(2n+1)π2πx(2n+1)π2x2n+12

Hence domain of y={x:xR and x2n+12,n is integer}

Range of y=R. GOOD

Find domain and range: y=Cosec4x

Solution.

Let θ=4x. Then y=Cosecθ

Domain of y={θ:θR and θnπ,n is integer}

Range: y1 and y1.

As θnπ4xnπxnπ4

Hence domain of y={x:xR and xnπ4,n is integer}

Range: y1 and y1. GOOD