Question 4(i-iv), Exercise 9.1
Solutions of Question 4(i-iv) of Exercise 9.1 of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 4(i)
Check whether the function is odd or even: y=sinx+x⋅cosx
Solution.
Consider f(x)=sinx+x⋅cosx.
Take f(−x)=sin(−x)+(−x)⋅cos(−x) As we know sin(−x)=−sinx and cos(−x)=cosx, so f(x)=−sinx−x⋅cosx=−(sinx+x⋅cosx)=−f(x) Thus the given function is odd.
Question 4(ii)
Check whether the function is odd or even: y=x3⋅sinx⋅cosx
Solution.
Consider f(x)=x3⋅sinx⋅cosx.
Take f(−x)=(−x)3⋅sin(−x)⋅cos(−x) As we know sin(−x)=−sinx and cos(−x)=cosx, so f(−x)=−x3(−sinx)(cosx)=x3⋅sinx⋅cosx=f(x) Thus the given function is even.
Question 4(iii)
Check whether the function is odd or even: y=x2⋅tanxx+sinx
Solution.
Consider
y=x2⋅tanxx+sinx.
Take
y(−x)=(−x)2⋅tan(−x)−x+sin(−x).
y(−x)=(−x)2⋅tan(−x)−x+sin(−x)=x2⋅(−tanx)−x−sinx=−x2⋅tanx−(x+sinx)=x2⋅tanxx+sinx=y(x)
Thus, the given function is even.
Question 4(iv)
Check whether the function is odd or even: y=x3sinxcos2x
Solution.
Consider y=x3sinxcos2x. Take y(−x)=(−x)3sin(−x)cos2(−x) y(−x)=(−x)3⋅(−sinx)⋅(cos2x)=−x3⋅(−sinx)⋅cos2x=−x3sinxcos2x=−y(x) Hence, the given function is odd.
Go to