Question 2 and 3, Review Exercise

Solutions of Question 2 and 3 of Review Exercise of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

If cosθsinθ=2sinθ, then show that cosθ+sinθ=2cosθ

Solution.

Given cosθsinθ=2sinθ This gives cosθ=2sinθ+sinθcosθ=(2+1)sinθsinθ=12+1cosθ...(1) Now LHS=cosθ+sinθ=cosθ+12+1cosθfrom (1)=(1+12+1)cosθ=2+1+12+1cosθ=2+22+1cosθ=2(2+12+1)cosθ=2cosθ=RHS

Verify: tanxcotxsinxcosx=sec2xcsc2x

Solution. LHS=tanxcotxsinxcosx=tanxsinxcosxcotxsinxcosx=sinxcosxsinxcosxcosxsinxsinxcosx=1cos21sin2x=sec2xcsc2x=RHS GOOD

Verify: sec4xtan4xsec2x+tan2x=sec2xtan2x

Solution.

LHS=sec4xtan4xsec2x+tan2x=(sec2x)2(tan2x)2sec2x+tan2x=(sec2x+tan2x)(sec2xtan2x)sec2x+tan2x=sec2xtan2x=RHS GOOD

Verify: sint1costsintcost1+cost=csc(1+cos2t)

Solution.