Question 2 and 3, Review Exercise
Solutions of Question 2 and 3 of Review Exercise of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 2
If cosθ−sinθ=√2sinθ, then show that cosθ+sinθ=√2cosθ
Solution.
Given cosθ−sinθ=√2sinθ This gives cosθ=√2sinθ+sinθ⟹cosθ=(√2+1)sinθ⟹sinθ=1√2+1cosθ...(1) Now LHS=cosθ+sinθ=cosθ+1√2+1cosθfrom (1)=(1+1√2+1)cosθ=√2+1+1√2+1cosθ=2+√2√2+1cosθ=√2(√2+1√2+1)cosθ=√2cosθ=RHS
Question 3(i)
Verify: tanx−cotxsinxcosx=sec2x−csc2x
Solution.
LHS=tanx−cotxsinxcosx=tanxsinxcosx−cotxsinxcosx=sinxcosxsinxcosx−cosxsinxsinxcosx=1cos2−1sin2x=sec2x−csc2x=RHS
Question 3(ii)
Verify: sec4x−tan4xsec2x+tan2x=sec2x−tan2x
Solution.
LHS=sec4x−tan4xsec2x+tan2x=(sec2x)2−(tan2x)2sec2x+tan2x=(sec2x+tan2x)(sec2x−tan2x)sec2x+tan2x=sec2x−tan2x=RHS
Question 3(iii)
Verify: sint1−cost−sintcost1+cost=csc(1+cos2t)
Solution.
Go to