Review exercise
On the following page we have given the solution of Review exercise of Mathematics 9 (Science) published by Caravan Book House, Lahore.
We have created this page and it will be updated to add new solutions occasionally. Please stay in touch with this page.
Question 1:
Chose the correct answers.
<quizlib id=“quiz” rightanswers=“'a1'],['a0'” submit=“Check Answers”>
<question title="(i). H.C.F. of $p^3q-pq^3$ and is $p^5q^2-p^2q^5$ is ..." type="radio"> A. $p q(p^2-q^2)$ | B. $p q(p-q)$| C. $p^2q^2((p-q)$ | D. $pq(p^3-q^3)$ </question> <question title="(ii) H.C.F. of $x^2 y^2$ and is $20 x^3 y^3$ is ..." type="radio"> A. $5 x^2 y^2$ | B. $20 x^3 y^3$| C. $100 x^5 y^5$ | D. $5 xy$</question>
</quizlib>
(iii) H.C.F. of x−2x−2 and is x2+x−6x2+x−6 is —
(a) x2+x−6x2+x−6 (b) x+3x+3
© x−2x−2 (d) x+2x+2
Answer:
cc
(iv) H.C.F. of a3+b3a3+b3 and is a2−ab+b2a2−ab+b2 is —
(a) a+ba+b (b) a2−ab+b2a2−ab+b2
© (a−b)2(a−b)2 (d) a2+b2a2+b2
Answer:
cc
(v) H.C.F. of x2−5x+6x2−5x+6 and is x2−x−6x2−x−6 is —
(a) x−3x−3 (b) x+2x+2
© x2−4x2−4 (d) x−2x−2
Answer:
aa
(vi) H.C.F. of a2−b2a2−b2 and is a3−b3a3−b3 is —
(a) a−ba−b (b) a+ba+b
© a2+ab+b2a2+ab+b2 (d) a2−ab+b2a2−ab+b2
Answer:
aa
(vii) H.C.F. of x2+3x+2x2+3x+2 ,x2+4x+3x2+4x+3 and is x2+5x+4x2+5x+4 is —
(a) x+1x+1 (b) (x+1)(x+2)(x+1)(x+2)
© x+3x+3 (d) (x+4)((x+1)(x+4)((x+1)
Answer:
aa
(viii) L.C.M. of 15x215x2 ,45xy45xy and is 30xyz30xyz is —
(a) 90xyz90xyz (b) 90x2yz90x2yz
© 15xyz15xyz (d) 15x2yz15x2yz
Answer:
bb
(ix) L.C.M. of a2+b2a2+b2 ,45xy45xy and is a4−b4a4−b4 is —
(a) a2+b2a2+b2 (b) a2−b2a2−b2
© a4−b4a4−b4 (d) a−ba−b
Answer:
cc
(x) The product of two algebraic expressions is equal to the — of their H.C.F. and L.C.M.
(a) Sum (b) Difference
© Product (d) Quotient
Answer:
cc
(xi) Simplify a9a2−b2+13a−ba9a2−b2+13a−b= —
(a) 4a9a2−b24a9a2−b2 (b) 4a−b9a2−b24a−b9a2−b2
© 4a+b9a2−b24a+b9a2−b2 (d) b9a2−b2b9a2−b2
Answer:
cc
(xii) Simplify a2+5a−14a2−3a−18×a+3a−2a2+5a−14a2−3a−18×a+3a−2= —
(a) a+7a−6a+7a−6 (b) a+7a−2a+7a−2
© a+3a−6a+3a−6 (d) a−2a+3a−2a+3
Answer:
aa
(xiii) Simplify a3−b3a4−b4÷a2+ab+b2a2+b2a3−b3a4−b4÷a2+ab+b2a2+b2= —
(a) 1a+b1a+b (b) 1a−b1a−b
© a−ba2+b2a−ba2+b2 (d) a+ba2+b2a+ba2+b2
Answer:
aa
(xiv) Simplify (2x+yx+y−1)÷(1−xx+y)(2x+yx+y−1)÷(1−xx+y)= —
(a) xx+yxx+y (b) yx+yyx+y
© yxyx (d) xyxy
Answer:
dd
(xv) The square root of a2−2a+1a2−2a+1 is —
(a) ±(a+1)±(a+1) (b) ±(a−b)±(a−b)
© (a−1)(a−1) (d) (a+1)(a+1)
Answer:
bb
(xvi) What should be added to complete the square of x4+64x4+64 ? —
(a) 8x28x2 (b) −8x2−8x2
© 16x216x2 (d) 4x24x2
Answer:
cc
(xvii) The square root of x4+1x4+2x4+1x4+2 is —
(a) ±(x+1x)±(x+1x) (b) (x2−1x2)(x2−1x2)
© ±(x−1x)±(x−1x) (d) ±(x2−1x2)±(x2−1x2)
Answer:
bb
Question 2:
Find the H.C.F. of the following by factorization. 8x4−1288x4−128 , 12x3−9612x3−96
Solution:
8x4−128=8(x4−16)=8[(x2)2−(4)2]=2×2×2×(x2+4)(x2−4)=2×2×2×(x2+4)(x−2)(x+2)
12x3−96=12(x3−8)=2×2×3×(x−2)(x2+2x+4)
H.C.F.=2×2(x−2)=4(x−2)
Question 4:
Find the L.C.M. of the following by factorization.
12x2−75,6x2−13x−5,4x2−20x+25
Solution:
12x2−75=3(4x2−25)=3[(2x)2−(5)2]=3(2x+5)(2x−5)
6x2−13x−5=6x2−15x+2x−5=3x(2x−5)+1(2x−5)=(2x−5)(3x+1)
4x2−20x+25=4x2−10x−10x+25=2x(2x−5)−5(2x−5)=(2x−5)(2x−5)
L.C.M.=3(2x+5)(2x−5)(3x+1)(2x−5)=3(2x+5)(2x−5)2(3x+1)
Question 5:
If H.C.F. of x4+3x3+5x2+26x+56 and x4+2x3−4x2−x+28 is x2+5x+7, find their L.C.M.
Solution:
p(x)=x4+3x3+5x2+26x+56
q(x)=x4+2x3−4x2−x+28
L.C.M.=?
L.C.M.=p(x)×q(x)H.C.F.=(x4+3x3+5x2+26x+56)(x4+2x3−4x2−x+28)x2+5x+7=x4+3x3+5x2+26x+56x2+5x+7=x2−2x+8
L.C.M.=x2−2x+8
Question 6:
Simplify:
(i) 3x3+x2+x+1−3x3−x2+x−1
(ii) a+ba2−b2÷a2−aba2−2ab+b2
Solution:
(i) 3x3+x2+x+1−3x3−x2+x−1
3x3+x2+x+1−3x3−x2+x−1=3x2(x+1)+1(x+1)−3x2(x−1)+1(x−1)=3(x+1)(x2+1)−3(x−1)(x2+1)=3(x2+1)[1x+1−1x−1]=3(x2+1)[x−1−x−1(x+1)(x−1)]=3(x2+1)[−2(x+1)(x−1)]=−6(x2+1)(x2−1)
*Solution:
(ii) a+ba2−b2÷a2−aba2−2ab+b2
a+ba2−b2÷a2−aba2−2ab+b2=a+b(a−b)(a+b)÷a(a−b)(a−b)2=1(a−b)÷a(a−b)=1(a−b)×(a−b)a=1a
====Question 7:====
Find square root by using factorization.
(x2+1x2)+10(x+1x)+27,(x≠0)
Solution:**
(x2+1x2)+10(x+1x)+27=(x2+1x2)+10(x+1x)+27−2+2=(x+1x)2+2(x+1x(5))+25=(x+1x)2+2(x+1x(5))+(5)2=(x+1x+5)2
√(x2+1x2)+10(x+1x)+27=±(x+1x+5)