Review exercise

On the following page we have given the solution of Review exercise of Mathematics 9 (Science) published by Caravan Book House, Lahore.

We have created this page and it will be updated to add new solutions occasionally. Please stay in touch with this page.

Chose the correct answers.

<quizlib id=“quiz” rightanswers=“'a1'],['a0'” submit=“Check Answers”>

  <question title="(i). H.C.F. of $p^3q-pq^3$ and is $p^5q^2-p^2q^5$ is ..." type="radio"> A. $p q(p^2-q^2)$ | B. $p q(p-q)$| C. $p^2q^2((p-q)$ | D. $pq(p^3-q^3)$ </question>
      <question title="(ii) H.C.F. of $x^2 y^2$ and is $20 x^3 y^3$ is ..." type="radio"> A. $5 x^2 y^2$ | B. $20 x^3 y^3$| C. $100 x^5 y^5$ | D. $5 xy$</question>

</quizlib>

(iii) H.C.F. of x2x2 and is x2+x6x2+x6 is —

(a) x2+x6x2+x6 (b) x+3x+3

© x2x2 (d) x+2x+2

Answer:

cc

(iv) H.C.F. of a3+b3a3+b3 and is a2ab+b2a2ab+b2 is —

(a) a+ba+b (b) a2ab+b2a2ab+b2

© (ab)2(ab)2 (d) a2+b2a2+b2

Answer:

cc

(v) H.C.F. of x25x+6x25x+6 and is x2x6x2x6 is —

(a) x3x3 (b) x+2x+2

© x24x24 (d) x2x2

Answer:

aa

(vi) H.C.F. of a2b2a2b2 and is a3b3a3b3 is —

(a) abab (b) a+ba+b

© a2+ab+b2a2+ab+b2 (d) a2ab+b2a2ab+b2

Answer:

aa

(vii) H.C.F. of x2+3x+2x2+3x+2 ,x2+4x+3x2+4x+3 and is x2+5x+4x2+5x+4 is —

(a) x+1x+1 (b) (x+1)(x+2)(x+1)(x+2)

© x+3x+3 (d) (x+4)((x+1)(x+4)((x+1)

Answer:

aa

(viii) L.C.M. of 15x215x2 ,45xy45xy and is 30xyz30xyz is —

(a) 90xyz90xyz (b) 90x2yz90x2yz

© 15xyz15xyz (d) 15x2yz15x2yz

Answer:

bb

(ix) L.C.M. of a2+b2a2+b2 ,45xy45xy and is a4b4a4b4 is —

(a) a2+b2a2+b2 (b) a2b2a2b2

© a4b4a4b4 (d) abab

Answer:

cc

(x) The product of two algebraic expressions is equal to the — of their H.C.F. and L.C.M.

(a) Sum (b) Difference

© Product (d) Quotient

Answer:

cc

(xi) Simplify a9a2b2+13aba9a2b2+13ab= —

(a) 4a9a2b24a9a2b2 (b) 4ab9a2b24ab9a2b2

© 4a+b9a2b24a+b9a2b2 (d) b9a2b2b9a2b2

Answer:

cc

(xii) Simplify a2+5a14a23a18×a+3a2a2+5a14a23a18×a+3a2= —

(a) a+7a6a+7a6 (b) a+7a2a+7a2

© a+3a6a+3a6 (d) a2a+3a2a+3

Answer:

aa

(xiii) Simplify a3b3a4b4÷a2+ab+b2a2+b2a3b3a4b4÷a2+ab+b2a2+b2= —

(a) 1a+b1a+b (b) 1ab1ab

© aba2+b2aba2+b2 (d) a+ba2+b2a+ba2+b2

Answer:

aa

(xiv) Simplify (2x+yx+y1)÷(1xx+y)(2x+yx+y1)÷(1xx+y)= —

(a) xx+yxx+y (b) yx+yyx+y

© yxyx (d) xyxy

Answer:

dd

(xv) The square root of a22a+1a22a+1 is —

(a) ±(a+1)±(a+1) (b) ±(ab)±(ab)

© (a1)(a1) (d) (a+1)(a+1)

Answer:

bb

(xvi) What should be added to complete the square of x4+64x4+64 ? —

(a) 8x28x2 (b) 8x28x2

© 16x216x2 (d) 4x24x2

Answer:

cc

(xvii) The square root of x4+1x4+2x4+1x4+2 is —

(a) ±(x+1x)±(x+1x) (b) (x21x2)(x21x2)

© ±(x1x)±(x1x) (d) ±(x21x2)±(x21x2)

Answer:

bb

Find the H.C.F. of the following by factorization. 8x41288x4128 , 12x39612x396

Solution:

8x4128=8(x416)=8[(x2)2(4)2]=2×2×2×(x2+4)(x24)=2×2×2×(x2+4)(x2)(x+2)

12x396=12(x38)=2×2×3×(x2)(x2+2x+4)

H.C.F.=2×2(x2)=4(x2)

Find the L.C.M. of the following by factorization.

12x275,6x213x5,4x220x+25

Solution:

12x275=3(4x225)=3[(2x)2(5)2]=3(2x+5)(2x5)

6x213x5=6x215x+2x5=3x(2x5)+1(2x5)=(2x5)(3x+1)

4x220x+25=4x210x10x+25=2x(2x5)5(2x5)=(2x5)(2x5)

L.C.M.=3(2x+5)(2x5)(3x+1)(2x5)=3(2x+5)(2x5)2(3x+1)

If H.C.F. of x4+3x3+5x2+26x+56 and x4+2x34x2x+28 is x2+5x+7, find their L.C.M.

Solution:

p(x)=x4+3x3+5x2+26x+56

q(x)=x4+2x34x2x+28

L.C.M.=?

L.C.M.=p(x)×q(x)H.C.F.=(x4+3x3+5x2+26x+56)(x4+2x34x2x+28)x2+5x+7=x4+3x3+5x2+26x+56x2+5x+7=x22x+8

L.C.M.=x22x+8

Simplify:

(i) 3x3+x2+x+13x3x2+x1

(ii) a+ba2b2÷a2aba22ab+b2

Solution:

(i) 3x3+x2+x+13x3x2+x1

3x3+x2+x+13x3x2+x1=3x2(x+1)+1(x+1)3x2(x1)+1(x1)=3(x+1)(x2+1)3(x1)(x2+1)=3(x2+1)[1x+11x1]=3(x2+1)[x1x1(x+1)(x1)]=3(x2+1)[2(x+1)(x1)]=6(x2+1)(x21)

*Solution:
(ii) a+ba2b2÷a2aba22ab+b2
a+ba2b2÷a2aba22ab+b2=a+b(ab)(a+b)÷a(ab)(ab)2=1(ab)÷a(ab)=1(ab)×(ab)a=1a
====Question 7:==== Find square root by using factorization.
(x2+1x2)+10(x+1x)+27,(x0)
Solution:**

(x2+1x2)+10(x+1x)+27=(x2+1x2)+10(x+1x)+272+2=(x+1x)2+2(x+1x(5))+25=(x+1x)2+2(x+1x(5))+(5)2=(x+1x+5)2

(x2+1x2)+10(x+1x)+27=±(x+1x+5)