Search
You can find the results of your search below.
Fulltext results:
- Question 3, Exercise 9.1
- (i)===== Find domain and range: y=7cos4x ** Solution. ** AS \begin{align*} & -1\leq \cos 4x \leq 1 \... = Find domain and range: y=cosx3 ** Solution. ** AS \begin{align*} & -1\leq \cos \frac{x}{3}... Find domain and range: y=sin2x3 ** Solution. ** AS \begin{align*} & -1 \leq \sin \frac{2x}{... domain and range: y=7cotπ2x ** Solution. ** Let θ=π2x. Then $$y=7 \co
- Question 5(vi-x), Exercise 9.1
- of the function: y=2Sin3x ** Solution. ** =====Question 5(vi)===== Draw the graph of ... h of the function: y=3Cosx ** Solution. ** =====Question 5(vii)===== Draw the graph of... of the function: y=Cos2x ** Solution. ** =====Question 5(viii)===== Draw the graph o... of the function: y=Sin2x ** Solution. ** =====Question 5(ix)===== Draw the graph of
- Question 6, Exercise 9.1
- 6(i)===== Find the period: y=6sec(2x−3) ** Solution. ** Since period of the sec is 2π, theref... 6(ii)===== Find the period: y=cos(5x+4) ** Solution. ** Since period of the cos is 2π, theref... d the period: y=cot4x+sin5x2 ** Solution. ** FIXME(unable to solve) =====Question 6(iv)===== Find the period: y=7sin(3x+3) ** Solution. ** Since the period of sin is 2π
- Question 10(i-v), Review Exercise
- amabad, Pakistan. =====Question 10(i)===== ** Solution. ** =====Question 10(ii)===== ** Solution. ** =====Question 10(iii)===== ** Solution. ** =====Question 10(iv)===== ** Solution. ** =====Question 10(v)===== ** Solution. ** ====Go
- Question 10(vi-x), Review Exercise
- mabad, Pakistan. =====Question 10(vi)===== ** Solution. ** =====Question 10(vii)===== ** Solution. ** =====Question 10(viii)===== ** Solution. ** =====Question 10(ix)===== ** Solution. ** =====Question 10(x)===== ** Solution. ** ====
- Question 10(xi-xv), Review Exercise
- mabad, Pakistan. =====Question 10(xi)===== ** Solution. ** =====Question 10(xii)===== ** Solution. ** =====Question 10(xiii)===== ** Solution. ** =====Question 10(xiv)===== ** Solution. ** =====Question 10(xv)===== ** Solution. ** ====Go
- Question 1, Exercise 9.1
- c function: y=2−2Cosθ ** Solution. ** We know \begin{align*} -1 \leq \operatorname... 2}{3}-\dfrac{1}{2} \operatorname{Sin} \theta$ ** Solution. ** We know \begin{align*} -1 \leq \operatorname... dfrac{1}{5}-2 \operatorname{Sin}(3 \theta-7)$ ** Solution. ** We know \begin{align*} -1 \leq \operatorname... 7+\frac{3}{5} \operatorname{Cos}(2 \theta-1)$ ** Solution. ** Given \[-1 \leq \operatorname{Cos} \theta \l
- Question 2, Exercise 9.1
- y=14+3Sinθ ** Solution. ** We know \begin{align*} -1 \leq \operatorname... {1}{\frac{1}{2}-5 \operatorname{Cos} \theta}$ ** Solution. ** {{ :math-11-nbf:sol:unit09:math-11-nbf-ex9-1... y=\dfrac{1}{\frac{1}{3}-4 \sin (2 \theta-5)}$ ** Solution. ** **Same as Question 2(ii), we see that given ... y=\dfrac{1}{3+\frac{2}{5} \sin (5 \theta-7)}$ ** Solution. ** We know \begin{align*} -1 \leq \operatornam
- Question 4(i-iv), Exercise 9.1
- ion is odd or even: y=sinx+x⋅cosx ** Solution. ** Consider f(x)=sinx+x⋅cosx. Take... or even: y=x3⋅sinx⋅cosx ** Solution. ** Consider f(x)=x3⋅sinx⋅cos...ven:y=\dfrac{x^{2} \cdot \tan x}{x+\sin x}$ ** Solution. ** Consider \[y = \frac{x^2 \cdot \tan x}{x + ... tion is odd or even: y=x3sinxcos2x ** Solution. ** Consider y=x3sinxcos2x. Take
- Question 4(v-viii), Exercise 9.1
- dd or even: y=sin2xx+tanx ** Solution. ** Consider \[y = \frac{\sin^2 x}{x + \tan x}\... or even: y=tanx−sinxsin3x ** Solution. ** Consider \[y = \frac{\tan x - \sin x}{\sin^... is odd or even: y=secxx+tanx ** Solution. ** Consider \[y = \frac{\tan x - \sin x}{\sin^... s odd or even: y=x2⋅sinx−cotx ** Solution. ** Consider y=x2⋅sinx−cotx
- Question 5(i-v), Exercise 9.1
- h of the function: y=2Sinx ** Solution. ** =====Question 5(ii)===== Draw the graph of... of the function: y=2Cos3x ** Solution. ** =====Question 5(iii)===== Draw the graph of... of the function: y=2Tan2x ** Solution. ** =====Question 5(iv)===== Draw the graph of ... m{y}=\operatorname{Cos} \frac{\mathrm{x}}{2}$ ** Solution. ** ====Go to ==== <text align="left"><btn ty
- Question 9, Exercise 9.1
- 9(i)===== Solve graphically: sinx=cosx ** Solution. ** =====Question 9(ii)===== Solve graphically: cosx=x ** Solution. ** =====Question 9(iii)===== Solve graphically: sinx=x ** Solution. ** =====Question 9(iv)===== Solve graphically: tanx=x ** Solution. ** ====Go to ==== <text align="left"><btn t
- Question 2 and 3, Review Exercise
- cos \theta+ \sin \theta=\sqrt{2} \cos \theta$ ** Solution. ** Given $$\cos \theta -\sin \theta=\sqrt{2}\si... cot x}{\sin x \cos x} = \sec^2 x - \csc^2 x$ ** Solution. ** \begin{align*} LHS & = \dfrac{\tan x - \cot x... {\sec^2 x + \tan^2 x} = \sec^2 x - \tan^2 x$ ** Solution. ** \begin{align*} LHS & = \dfrac{\sec^4 x - \ta... in t \cos t}{1+ \cos t} = \csc (1+\cos^2 t)$ ** Solution. ** ====Go to ==== <text align="left"><btn typ
- Question 7 & 8, Exercise 9.1
- e{Sin} 2 xin[0,2 \pi]$ on the same scale. ** Solution. ** =====Question 8===== Draw the graphs of ... e{Cos} 2 xin[0,2 \pi]$ on the same scale. ** Solution. ** ====Go to ==== <text align="left"><btn
- Question 5 and 6, Review Exercise
- Islamabad, Pakistan. =====Question 5===== ** Solution. ** =====Question 6===== ** Solution. ** ====Go to ==== <text align="left"><btn type="primary">