Question 1, Exercise 1.3
Solutions of Question 1 of Exercise 1.3 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 1(i)
Solve the simultaneous linear equation with complex coefficient. z−4w=3i2z+3w=11−5i
Solution
Given that
z−4w=3i…(i)2z+3w=11−5i…(ii)
Multiply 2 by (i), we get
2z−8w=6i…(iii)
Subtract (iii) from (ii), we get
2z−8w=6i+−2z+−3w=−+5i+−110−11w=11i−11
−11w=11i−11⟹w=11−11i11⟹w=1−i
Put value of w in (i).
z−4(1−i)=3i⟹z=4(1−i)+3i=4−4i+3i=4−i
Hence
z=4−i,w=1−i.
Question 1(ii)
Solve the simultaneous linear equation with complex coefficient. z+w=3i2z+3w=2
Solution
Given that
z+w=3i…(i)2z+3w=2…(ii)
Multiply 2 by (i), we get
2z+2w=6i…(iii)
Subtract (iii) from (ii), we get
2z+2w=6i+−2z+−3w=+−2−w=6i−2
−w=6i−2
w=2−6i
Put value of w in (i).
z+(2−6i)=3i⟹z=3i−2+6i=−2+9i
Hence
z=−2+9i,w=2−6i.
Question 1(iii)
Solve the simultaneous linear equation with complex coefficient. 3z+(2+i)w=11−i(2−i)z−w=−1+i
Solution
Given that
3z+(2+i)w=11−i…(i)(2−i)z−w=−1+i…(ii)
Multiply (2−i) by (ii), we get,
(2−i)(2+i)z−(2+i)w=(2+i)(i−1)5z−(2+i)w=i−3…(iii)
Add (i) and (iii), we get,
3z+(2+i)w=−i+115z−(2+i)w=i−38z0=8⟹z=1
Put value of z in (i).
3(1)+(2+i)w=11−i⟹(2+i)w=11−i−3⟹(2+i)w=8−i
⟹w=8−i2+i=8−i2+i×2−i2−i=16−8i−2i−14+1=15−10i5=3−2i
Hence
z=1,w=3−2i.
Go to