Question11 and 12, Exercise 10.1

Solutions of Question 11 and 12 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If α, β, γ are the angles of a triangle ABC, show that cotα2+cotβ2+cotγ2=cotα2cotβ2cotγ2

Since α, β and γ are angles of triangle, therefore α+β+γ=180α+β=180γα+β2=180γ2α2+β2=90γ2 Now tan(α2+β2)=tan(90γ2)tanα2+tanβ21tanα2tanβ2=cotγ2tan(90γ2)=cotγ2 tanα2tanβ2(1tanβ2+1tanα2)tanα2tanβ2(1tanα2tanβ21)=cotγ2cotβ2+cotα2cotα2cotβ21=cotγ2cotβ2+cotα2=cotγ2(cotα2cotβ21)cotβ2+cotα2=cotα2cotβ2cotγ2cotγ2cotα2+cotβ2+cotγ2=cotα2cotβ2cotγ2.

If α+β+γ=180, show that cotαcotβ+cotβcotγ+cotγcotα=1

Since α,β and γ are angles of triangle, therefore α+β+γ=180α+β=180γ. Now tan(α+β)=tan(180γ)tanα+tanβ1tanαtanβ=tan(2(90)γ)tanα+tanβ1tanαtanβ=tanγtanα+tanβ=tanγ(1tanαtanβ)tanα+tanβ=tanγ+tanαtanβtanγtanα+tanβ+tanγ=tanαtanβtanγ. Dividing through out by tanαtanβtanγ to get tanαtanαtanβtanγ+tanβtanαtanβtanγ+tanγtanαtanβtanγ=1cotβcotγ+cotαcotγ+cotαcotβ=1cotαcotβ+cotβcotγ+cotγcotα=1.

< Question 9,10 Question 13 >