Question11 and 12, Exercise 10.1
Solutions of Question 11 and 12 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 11
If α, β, γ are the angles of a triangle ABC, show that cotα2+cotβ2+cotγ2=cotα2cotβ2cotγ2
Solution
Since α, β and γ are angles of triangle, therefore α+β+γ=180∘⟹α+β=180∘−γ⟹α+β2=180∘−γ2⟹α2+β2=90∘−γ2 Now tan(α2+β2)=tan(90−γ2)⟹tanα2+tanβ21−tanα2tanβ2=cotγ2∵tan(90−γ2)=cotγ2 ⟹tanα2tanβ2(1tanβ2+1tanα2)tanα2tanβ2(1tanα2tanβ2−1)=cotγ2⟹cotβ2+cotα2cotα2cotβ2−1=cotγ2⟹cotβ2+cotα2=cotγ2(cotα2cotβ2−1)⟹cotβ2+cotα2=cotα2cotβ2cotγ2−cotγ2⟹cotα2+cotβ2+cotγ2=cotα2cotβ2cotγ2.
Question 12
If α+β+γ=180∘, show that cotαcotβ+cotβcotγ+cotγcotα=1
Solution
Since α,β and γ are angles of triangle, therefore α+β+γ=180∘⟹α+β=180∘−γ. Now tan(α+β)=tan(180∘−γ)⟹tanα+tanβ1−tanαtanβ=tan(2(90∘)−γ)⟹tanα+tanβ1−tanαtanβ=−tanγ⟹tanα+tanβ=−tanγ(1−tanαtanβ)⟹tanα+tanβ=−tanγ+tanαtanβtanγ⟹tanα+tanβ+tanγ=tanαtanβtanγ. Dividing through out by tanαtanβtanγ to get tanαtanαtanβtanγ+tanβtanαtanβtanγ+tanγtanαtanβtanγ=1⟹cotβcotγ+cotαcotγ+cotαcotβ=1⟹cotαcotβ+cotβcotγ+cotγcotα=1.