Question 9 and 10, Exercise 10.1

Solutions of Question 9 and 10 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Prove that: sinθsec4θ+cosθcosec4θ=sin5θ

L.H.S.=sinθsec4θ+cosθcosec4θ=sinθ1cos4θ+cosθ1sin4θ=sinθcos4θ+cosθsin4θ=sin(θ+4θ)=sin5θ=R.H.S.

Show that: sin(180α)cos(270α)sin(180+α)cos(270+α)=1

L.H.S.=sin(180α)cos(270α)sin(180+α)cos(270+α)=(sin180cosαcos180sinα)(cos270cosαsin270sinα)(sin180cosα+cos180sinα)(cos270cosα+sin270sinα)=((0)cosα(1)sinα)((0)cosα(1)sinα)((0)cosα+(1)sinα)((0)cosα+(1)sinα)=(sinα)(sinα)(sinα)(sinα)=1=R.H.S.

< Question 8 Question 11,12 >