Question 8, Exercise 1.1
Solutions of Question 8 of Exercise 1.1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 8(i)
Express the 1−2i2+i+4−i3+2i in the standard form of a+ib.
Solution
1−2i2+i+4−i3+2i=(3+2i)(1−2i)+(2+i)(4−i)(2+i)(3+2i)=(3+4+2i−6i)+(8+1+4i−2i)(6−2+3i+4i)=(7−4i)+(9+2i)4+7i=16−2i4+7i=16−2i4+7i×4−7i4−7i=(64−14)−(112+8)i16+49=50−120i65=10−24i13=1013−24i13
Question 8(ii)
Express the 2+√−9−5−√−16 in the standard form of a+ib.
Solution
2+√−9−5−√−16=2+3i−5−4i=2+3i−5−4i×−5+4i−5+4i=(−10−12)+(8−15)i25+16=−22−7i41=−2241−7i41
Question 8(iii)
Express the (1+i)24+3i in the standard form of a+ib.
Solution
(1+i)(1+i)4+3i=1−1+i+i4+3i=2i4+3i=2i4+3i×4−3i4−3i=6+8i16+9=6+8i25=625+8i25
Go to