Question 8, Exercise 1.1

Solutions of Question 8 of Exercise 1.1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Express the 12i2+i+4i3+2i in the standard form of a+ib.

12i2+i+4i3+2i=(3+2i)(12i)+(2+i)(4i)(2+i)(3+2i)=(3+4+2i6i)+(8+1+4i2i)(62+3i+4i)=(74i)+(9+2i)4+7i=162i4+7i=162i4+7i×47i47i=(6414)(112+8)i16+49=50120i65=1024i13=101324i13

Express the 2+9516 in the standard form of a+ib.

2+9516=2+3i54i=2+3i54i×5+4i5+4i=(1012)+(815)i25+16=227i41=22417i41

Express the (1+i)24+3i in the standard form of a+ib.

(1+i)(1+i)4+3i=11+i+i4+3i=2i4+3i=2i4+3i×43i43i=6+8i16+9=6+8i25=625+8i25