Question 9, Exercise 2.1
Solutions of Question 9 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 9(i)
If A=[2−13101], B=[122230], show that (AB)t=BtAt.
Solution
A=[2−13101], B=[122230] At=[21−1031] Bt=[123220] AB=[2−13101][122230] AB=[2−2+94−2+01+0+32+0+0] AB=[9242] (AB)t=[9422] BtAt=[123220][21−1031] BtAt=[2−2+91+0+34−2+02+0+0] BtAt=[9422] (AB)t=BtAt
Question 9(ii)
If A=[120−114], B=[11231−2], show that (AB)t=BtAt.
Solution
A=[120−114] B=[11231−2] At=[1−12104] Bt=[12113−2] AB=[120−114][11231−2] AB=[1+4+01+6+0−1+2+4−1+3−8] AB=[575−6] (AB)t=[557−6] BtAt=[12113−2][1−12104] BtAt=[1+4+0−1+2+41+6+0−1+3−8] BtAt=[557−6] (AB)t=BtAt
Go To