Question 9, Exercise 2.1

Solutions of Question 9 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If A=[213101], B=[122230], show that (AB)t=BtAt.

A=[213101], B=[122230] At=[211031] Bt=[123220] AB=[213101][122230] AB=[22+942+01+0+32+0+0] AB=[9242] (AB)t=[9422] BtAt=[123220][211031] BtAt=[22+91+0+342+02+0+0] BtAt=[9422] (AB)t=BtAt

If A=[120114], B=[112312], show that (AB)t=BtAt.

A=[120114] B=[112312] At=[112104] Bt=[121132] AB=[120114][112312] AB=[1+4+01+6+01+2+41+38] AB=[5756] (AB)t=[5576] BtAt=[121132][112104] BtAt=[1+4+01+2+41+6+01+38] BtAt=[5576] (AB)t=BtAt