Question 6, Exercise 2.2

Solutions of Question 6 of Exercise 2.2 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Prov that |abbccabccaabcaabbc|=0

Let L.H.S=|abbccabccaabcaabbc|=|acbacbbccaabcaabbc|R1+R2=|caabbcbccaabcaabbc|R1=0R1R3=R.H.S.

Prov that |1aa31bb31cc3|=(ab)(bc)(ca)(a+b+c)

Let L.H.S.=|1aa31bb31cc3| Subtract first row from second row and second row from third row. We have, =|0aba3b30bcb3c31cc3| =|0(ab)(ab)(a2+ab+b2)0(bc)(bc)(b2+bc+c2)1cc3| =(ab)(bc)|01(a2+ab+b2)01(b2+bc+c2)1cc3| =(ab)(bc)|1(a2+ab+b2)1(b2+bc+c2)| =(ab)(bc)[(b2+bc+c2)(a2+ab+b2)] =(ab)(bc)(b2+bc+c2a2abb2) =(ab)(bc)(bc+c2a2ab) =(ab)(bc)(b(ca)+(ca)(c+a)) =(ab)(bc)(ca)(a+b+c) =R.H.S.

Prov that |1aa21bb21cc2|=(ab)(bc)(ca)

Let L.H.S.=|1aa21bb21cc2| Subtract first row from second row and second row from third row, we have, =|0aba2b20bcb2c21cc2| =|0(ab)(ab)(a+b)0(bc)(bc)(b+c)1cc2| =(ab)(bc)|01(a+b)01(b+c)1cc2| =(ab)(bc)|1(a+b)1(b+c)| =(ab)(bc)(b+cba) =(ab)(bc)(ca) =R.H.S.

Prove that |a2abacabb2bcacbcc2|=4a2b2c2

L.H.S.=|a2abacabb2bcacbcc2|=a2(b2c2b2c2)ab(abc2abc2)+ac(ab2c+ab2c)=0+2a2b2c2+2a2b2c2=4a2b2c2=R.H.S.

Prov that |bca31acab31babc31c|=0a0,b0,c0.

Let L.H.S.=|bca31acab31babc31c| Multiply first row by a, second row by b and third row by c. We have, =1abc|abca4a1abcab4b1bcabc4c1c| =abcabc|1a411b411c41| =|1a411b411c41| Two identical columns, so determinant is zero. =0 =R.H.S.