Question 5, Exercise 10.1

Solutions of Question 5 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If tanα=34, secβ=135 and neither the terminal side of the angle of measure α nor β in the first Quadrant, then find: sin(α+β).

Given: tanα=34.

As tanα is +ive and terminal arm of α in not in the 1st quadrant, therefor it lies in 3rd quadrant. Now sec2α=1+tan2αsecα=±1+tan2α.

Since terminal arm of α is in the 3rd quadrant, value of sec is –ive secα=1+tan2αsecα=1+(34)2=1+916=2516secα=54

Now cosα=1secα=154 cosα=45 Now sinαcosα=tanαsinα=tanαcosαsinα=(34)(45)sinα=35 Given: secβ=135.

As cosβ=1secβ=1135cosβ=513

As cosβ is +ive and terminal arm of β is not in the 1st quadrant, it lies in 4th quadrant. Now sin2β=1cos2βsinβ=±1cos2β. Since terminal ray of β is in the fourth quadrant so value of sin is –ive, sinβ=1cos2βsinβ=1(513)2=125169=144169sinβ=1213

Now sin(α+β)=sinαcosβ+cosαsinβ=(35)(513)+(45)(1213)=313+4865 \implies \bbox[4px,border:2px solid black]{\sin(\alpha +\beta)=\dfrac{33}{65}.}

If \tan \alpha =\dfrac{3}{4}, \sec \beta =\dfrac{13}{5} and neither the terminal side of the angle of measure \alpha nor \beta in the first Quadrant, then find: \cos \left( \alpha +\beta \right).

Given: \tan\alpha =\dfrac{3}{4}.

As \tan\alpha is +ive and terminal arm of \alpha in not in the 1st quadrant, therefor it lies in 3rd quadrant. Now \begin{align}{{\sec}^{2}}\alpha &=1+{{\tan}^{2}}\alpha\\ \Rightarrow \quad \sec \alpha &=\pm \sqrt{1+{{\tan}^{2}}\alpha}.\end{align}

Since terminal arm of \alpha is in the 3rd quadrant, value of \sec is –ive \begin{align}\sec \alpha &=-\sqrt{1+{{\tan}^{2}}\alpha }\\ \Rightarrow \quad \sec \alpha &=-\sqrt{1+{{\left(\frac{3}{4} \right)}^{2}}}=-\sqrt{1+\frac{9}{16}}=-\sqrt{\frac{25}{16}\,}\\ \Rightarrow \quad \sec \alpha&=-\frac{5}{4} \end{align}

Now \cos\alpha =\frac{1}{\sec \alpha }=\frac{1}{-\tfrac{5}{4}} \Rightarrow \quad \cos\alpha=-\dfrac{4}{5} Now \begin{align}\frac{\sin \alpha }{\cos \alpha }&=\tan \alpha \\ \Rightarrow \quad \sin \alpha &=\tan \alpha \cos \alpha \\ \Rightarrow \quad \sin \alpha &=\left(\frac{3}{4}\right)\left(-\frac{4}{5} \right)\\ \Rightarrow \quad \sin\alpha &= \frac{3}{5}\end{align} Given: \sec \beta =\dfrac{13}{5}.

As \begin{align}\cos\beta &= \dfrac{1}{\sec\beta} = \dfrac{1}{\tfrac{13}{5}}\\ \implies \cos\beta &=\dfrac{5}{13}\end{align}

As \cos\beta is +ive and terminal arm of \beta is not in the 1st quadrant, it lies in 4th quadrant. Now \begin{align}\sin^{2}\beta &=1-\cos^2\beta \\ \Rightarrow \quad \sin\beta &=\pm\sqrt{1-\cos^2\beta}. \end{align} Since terminal ray of \beta is in the fourth quadrant so value of \sin is –ive, \begin{align}\sin\beta &=-\sqrt{1-{{\cos }^{2}}\beta } \\ \Rightarrow \quad \sin\beta &=-\sqrt{1-{{\left( \frac{5}{13} \right)}^{2}}}\\ &=-\sqrt{1-\frac{25}{169}}=-\sqrt{\frac{144}{169}} \\ \Rightarrow \quad \sin\beta&=-\dfrac{12}{13} \end{align}

Now \begin{align} \cos(\alpha+\beta)&=\cos\alpha \cos\beta -\sin\alpha \sin\beta \\ &=\left(-\frac{4}{5}\right)\left(\frac{5}{13}\right)-\left(\frac{3}{5}\right)\left(-\frac{12}{13}\right)\\ &=-\frac{20}{65}+\frac{36}{65}\end{align} \implies \bbox[4px,border:2px solid black]{\cos(\alpha +\beta)=\dfrac{16}{65}.}

If \tan\alpha =\dfrac{3}{4}, \sec \beta =\dfrac{13}{5} and neither the terminal side of the angle of measure \alpha nor \beta in the first Quadrant, then find: \tan \left( \alpha +\beta \right).

Given: \tan\alpha =\dfrac{3}{4}.

As \tan\alpha is +ive and terminal arm of \alpha in not in the 1st quadrant, therefor it lies in 3rd quadrant. Now \begin{align}{{\sec}^{2}}\alpha &=1+{{\tan}^{2}}\alpha\\ \Rightarrow \quad \sec \alpha &=\pm \sqrt{1+{{\tan}^{2}}\alpha}.\end{align}

Since terminal arm of \alpha is in the 3rd quadrant, value of \sec is –ive \begin{align}\sec \alpha &=-\sqrt{1+{{\tan}^{2}}\alpha }\\ \Rightarrow \quad \sec \alpha &=-\sqrt{1+{{\left(\frac{3}{4} \right)}^{2}}}=-\sqrt{1+\frac{9}{16}}=-\sqrt{\frac{25}{16}\,}\\ \Rightarrow \quad \sec \alpha&=-\frac{5}{4} \end{align}

Now \cos\alpha =\frac{1}{\sec \alpha }=\frac{1}{-\tfrac{5}{4}} \Rightarrow \quad \cos\alpha=-\dfrac{4}{5} Now \begin{align}\frac{\sin \alpha }{\cos \alpha }&=\tan \alpha \\ \Rightarrow \quad \sin \alpha &=\tan \alpha \cos \alpha \\ \Rightarrow \quad \sin \alpha &=\left(\frac{3}{4}\right)\left(-\frac{4}{5} \right)\\ \Rightarrow \quad \sin\alpha &= \frac{3}{5}\end{align} Given: \sec \beta =\dfrac{13}{5}.

As \begin{align}\cos\beta &= \dfrac{1}{\sec\beta} = \dfrac{1}{\tfrac{13}{5}}\\ \implies \cos\beta &=\dfrac{5}{13}\end{align}

As \cos\beta is +ive and terminal arm of \beta is not in the 1st quadrant, it lies in 4th quadrant. Now \begin{align}\sin^{2}\beta &=1-\cos^2\beta \\ \Rightarrow \quad \sin\beta &=\pm\sqrt{1-\cos^2\beta}. \end{align} Since terminal ray of \beta is in the fourth quadrant so value of \sin is –ive, \begin{align}\sin\beta &=-\sqrt{1-{{\cos }^{2}}\beta } \\ \Rightarrow \quad \sin\beta &=-\sqrt{1-{{\left( \frac{5}{13} \right)}^{2}}}\\ &=-\sqrt{1-\frac{25}{169}}=-\sqrt{\frac{144}{169}} \\ \Rightarrow \quad \sin\beta&=-\dfrac{12}{13} \end{align} Now \begin{align} \tan(\alpha+\beta)&=\dfrac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)}\\ &= \dfrac{\sin\alpha \cos\beta -\cos\alpha \sin\beta}{\cos\alpha \cos\beta -\sin\alpha \sin\beta}\\ &= \dfrac{\left(-\frac{3}{5}\right)\left(\frac{5}{13}\right)+\left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right)}{\left(-\frac{4}{5}\right)\left(\frac{5}{13}\right)-\left(\frac{3}{5}\right)\left(-\frac{12}{13}\right)}\\ &=\dfrac{-\frac{3}{13}+\frac{48}{65}}{-\frac{20}{65}+\frac{36}{65}} &=\end{align} \implies \bbox[4px,border:2px solid black]{\tan(\alpha +\beta)=\dfrac{33}{16}.}

< Question 4 Question 6 >