Question 6, Exercise 10.1

Solutions of Question 1 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Show that: cosα=2cos2α21=12sin2α2

We start from cosα=cos2α2=cos2α2sin2α2=cos2α2(1cos2α2)=2cos2α21(1) Now 2cos2α21=2(1sin2α2)1=22sin2α21=12sin2α2(2) Now combining (1) and (2), we get cosα=2cos2α21=12sin2α2 as required.

Show that: sin(α+β)sin(αβ)=cos2βcos2α

L.H.S.=sin(α+β)sin(αβ)=(sinαcosβ+cosαsinβ)(sinαcosβcosαsinβ)=sin2αcos2βcos2αsin2β=sin2α(1sin2β)(1sin2α)sin2β=sin2αsin2αsin2βsin2β+sin2αsin2β=sin2αsin2β=(1cos2α)(1cos2β)=1cos2α1+cos2β=cos2βcos2α=R.H.S.

< Question 5 Question 7 >