Question 6, Exercise 10.1
Solutions of Question 1 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 6(i)
Show that: cosα=2cos2α2−1=1−2sin2α2
Solution
We start from cosα=cos2α2=cos2α2−sin2α2=cos2α2−(1−cos2α2)=2cos2α2−1…(1) Now 2cos2α2−1=2(1−sin2α2)−1=2−2sin2α2−1=1−2sin2α2…(2) Now combining (1) and (2), we get cosα=2cos2α2−1=1−2sin2α2 as required.
Question 6(ii)
Show that: sin(α+β)sin(α−β)=cos2β−cos2α
Solution
L.H.S.=sin(α+β)sin(α−β)=(sinαcosβ+cosαsinβ)(sinαcosβ−cosαsinβ)=sin2αcos2β−cos2αsin2β=sin2α(1−sin2β)−(1−sin2α)sin2β=sin2α−sin2αsin2β−sin2β+sin2αsin2β=sin2α−sin2β=(1−cos2α)−(1−cos2β)=1−cos2α−1+cos2β=cos2β−cos2α=R.H.S.