Question 1 and 2, Exercise 4.8
Solutions of Question 1 and 2 of Exercise 4.8 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1
Using the method of difference, find the sum of the series: $3+7+13+21+\ldots$ to $n$ term.
Solution.
Let
$$ S_{n}=3+7+13+21+31+\ldots +T_{n} $$
Also
$$ S_{n}=3+7+13+21+\ldots +T_{n-1}+T_{n}.$$
Subtracting second expression from the first expression, we have
\begin{align*}
S_{n}-S_{n}& =3+7+13+21+31+\ldots +T_{n} \\
& -\left(3+7+13+21+\ldots +T_{n-1}+T_{n}\right)
\end{align*}
\begin{align*}
\implies 0=&3+(7-3)+(13-7)+(21-13) \\ &+(31-21)+\ldots +\left(T_{n}-T_{n-1}\right)-T_{n}. \\
\implies 0=&3+(4+6+8+10+\ldots \text { up to } (n-1) \text { terms })-T_{n}
\end{align*}
Then
\begin{align*}
T_{n} & =3+(4+6+8+10+\ldots \text { up to }(n-1) \text { terms }) \\
& =3+\frac{n-1}{2}[2(4)+(n-1-1)(2)] \quad\left(\because S_{n}=\frac{n}{2}[2 a+(n-1) d]\right) \\
& =3+\frac{n-1}{2}[8+(n-2)(2)] \\
& =3+\frac{n-1}{2}[2n+4] \\
& =3+(n-1)(n+2) \\
& =3+n^2-n+2n-2 \\
& =n^2+n+1
\end{align*}
Thus, the kth term of series:
$$ T_{k}=k^2++k+1 $$
Now taking sum, we get
\begin{align*}
S_{n} & =\sum_{k=1}^{n} T_{k}=\sum_{k=1}^{n} (k^2++k+1) \\
& =\sum_{k=1}^{n} k^2+\sum_{k=1}^{n} k+\sum_{k=1}^{n} 1 \\
& =\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}+n\\
& =\frac{n}{6}[(n+1)(2n+1)+3(n+1)+6] \\
& =\frac{n}{6}(2n^2+2n+n+1+3n+3+6) \\
& =\frac{n}{6}(2n^2+6n+10) \\
& =\frac{n}{3}(n^2+3n+5)
\end{align*}
Hence the sum of given series is $\dfrac{n}{3}(n^2+3n+5)$.
Question 2
Using the method of difference, find the sum of the series: $1+4+10+22+\ldots$ to $n$ term.
Solution.
Let
$$ S_{n}=1+4+10+22+46+\ldots +T_{n} $$
Also
$$ S_{n}=1+4+10+22+\ldots +T_{n-1}+T_{n}. $$
Subtracting second expression from the first expression, we have
\begin{align*}
S_{n}-S_{n}& =1+4+10+22+46+\ldots +T_{n} \\
& -\left(1+4+10+22+\ldots +T_{n-1}+T_{n}\right)
\end{align*}
\begin{align*}
\implies 0=&1+(4-1)+(10-4)+(22-10)+(46-33) \\
& +\ldots+(T_{n}-T_{n-1})-T_{n}. \\
\implies 0=&1+(3+6+12+24+\ldots \text { up to } (n-1) \text { terms })-T_{n}
\end{align*}
Then
\begin{align*}
T_{n} & =1+(3+6+12+24+\ldots \text { up to }(n-1) \text { terms }) \\
& =1+\frac{3(2^{n-1}-1)}{2-1} \quad\left(\because S_{n}=\frac{a(r^n-1)}{r-1}\right) \\
& =1+3(2^{n-1}-1) \\
& =1+3\cdot 2^{n-1}-3 \\
& =3\cdot 2^{n-1}-2.
\end{align*}
Thus, the kth term of series:
$$ T_{k}=3\cdot 2^{k-1}-2 $$
Now taking sum, we get
\begin{align*}
S_{n} & =\sum_{k=1}^{n} T_{k}=\sum_{k=1}^{n} (3\cdot 2^{k-1}-2) \\
& =3\sum_{k=1}^{n} 2^{k-1}- 2\sum_{k=1}^{n} 1 \\
& =3(1+2+2^2+2^3+... \text{ up to } n \text{ terms}) -2n\\
& =3\frac{(1)(2^n-1)}{2-1}-2n \\
& =3(2^n-1)-2n
\end{align*}
Hence the sum of given series is $3(2^n-1)-2n$.
Go to