Question 5 and 6, Exercise 4.8
Solutions of Question 5 and 6 of Exercise 4.8 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 5
Using the method of difference, find the sum of the series: $3+4+6+10+18+34+66+\dots$ to $n$ term.
Solution.
Let
$$ S_{n}=3+4+6+10+18+\ldots +T_{n} $$
Also
$$ S_{n}=3+4+6+10+\ldots +T_{n-1}+T_{n}. $$
Subtracting the second expression from the first expression, we have
\begin{align*}
S_{n}-S_{n}& =3+4+6+10+18+\ldots +T_{n} \\
& -\left(3+4+6+10+\ldots +T_{n-1}+T_{n}\right)
\end{align*}
\begin{align*}
\implies 0=&3+(4-3)+(6-4)+(10-6)+(18-10) \\
& +\ldots+(T_{n}-T_{n-1})-T_{n}. \\
\implies 0=&3+(1+2+4+8+\ldots \text { up to } (n-1) \text { terms })-T_{n}
\end{align*}
Then
\begin{align*}
T_{n} & =3+(1+2+4+8+\ldots \text { up to }(n-1) \text { terms }) \\
& =3+\frac{1(2^{n-1}-1)}{2-1} \quad\left(\because S_{n}=\frac{a(r^n-1)}{r-1}\right) \\
& =3+(2^{n-1}-1) \\
& =2^{n-1}+2.
\end{align*}
Thus, the kth term of the series:
$$ T_{k}=2^{k-1}+2. $$
Now taking the sum, we get
\begin{align*}
S_{n} & =\sum_{k=1}^{n} T_{k}=\sum_{k=1}^{n} (2^{k-1}+2) \\
& =\sum_{k=1}^{n} 2^{k-1} + \sum_{k=1}^{n} 2 \\
& =\left(1+2+2^2+2^3+...+\text{ up to } n \text{ terms}\right) + 2n \\
& =\frac{1(2^n-1)}{2-1} + 2n \\
& =2^n - 1 + 2n.
\end{align*}
Hence, \( S_n = 2^n - 1 + 2n \).
Question 6
Using the method of difference, find the sum of the series: $1+4+8+14+24+42+76+\ldots$ to $n$ term.
Solution.
Let
$$ S_{n}=1+4+8+14+24+42+\ldots +T_{n} $$
Also
$$ S_{n}=1+4+8+14+24+42+ldots +T_{n-1}+T_{n}. $$
Subtracting the second expression from the first expression, we have
\begin{align*}
S_{n}-S_{n}& =1+4+8+14+24+42+\ldots +T_{n} \\
& -\left(1+4+8+14+24+\ldots +T_{n-1}+T_{n}\right)
\end{align*}
\begin{align*}
\implies 0=&1+(4-1)+(8-4)+(14-8)+(24-14)\\ &+ (42-24)+\ldots+(T_{n}-T_{n-1})-T_{n}. \\
\implies 0=&1+(3+4+6+10+18+ \ldots \text{ up to } (n-1) \text{ terms })-T_{n}.
\end{align*}
Then
\begin{align*}
T_{n} & =1+(3+4+6+10+18+\ldots \text{ up to }(n-1) \text{ terms }) \\
& =1+2^{n-1}-1+2(n-1) \quad \text{(from previous question)} \\
& =2^{n-1}+2n-2 \\
\end{align*}
Thus, the \(k\)-th term of the series is:
$$ T_{k}=2^{k-1}+2k-2 . $$
Now, taking the sum, we get
\begin{align*}
S_{n} & =\sum_{k=1}^{n} T_{k}=\sum_{k=1}^{n} \left( 2^{k-1}+2k-2 \right) \\
&= \sum_{k=1}^{n} 2^{k-1} + 2 \sum_{k=1}^{n} k - 2 \sum_{k=1}^{n} 1 \\
&=(1+2+2^2+2^3+...\text{ to n terms})+2\frac{n(n-1)}{2} -2n \\
&=\frac{1(2^n-1)}{2-1}+n(n-1)-2n\\
&=2^n-1+n^2-n-2n\\
&=2^n+n^2-3n-1.
\end{align*}
Thus
$ S_{n} = 2^n+n^2-3n-1. $
Go to