Question 9 and 10, Exercise 4.8
Solutions of Question 9 and 10 of Exercise 4.8 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 9
Evaluate the sum of the series: $$\frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 5}+\frac{1}{3 \cdot 7}+\ldots \ldots \text{ up to } \infty$$
Solution.
Do yourself
Question 10
Evaluate the sum of the series: $\sum_{k=3}^{n} \dfrac{1}{(k+1)(k+2)}$
Solution.
Consider
\begin{align*}
T_k &= \frac{1}{(k+1)(k+2)}.
\end{align*}
Resolving it into partial fractions:
\begin{align*}
\frac{1}{(k+1)(k+2)} = \frac{A}{k+1} + \frac{B}{k+2} \ldots (1)
\end{align*}
Multiplying both sides by $(k+1)(k+2)$, we get
\begin{align*}
1 = (k+2)A + (k+1)B \ldots (2)
\end{align*}
Now, put $k+1=0 \implies k=-1$ in equation (2):
\begin{align*}
1 &= (-1+2)A + 0 \\
\implies A &= 1.
\end{align*}
Next, put $k+2=0 \implies k=-2$ in equation (2):
\begin{align*}
1 &= 0 + (-2+1)B \\
\implies B &= -1.
\end{align*}
Using the values of $A$ and $B$ in equation (1), we get
\begin{align*}
\frac{1}{(k+1)(k+2)} &= \frac{1}{k+1} - \frac{1}{k+2}.
\end{align*}
Thus,
\begin{align*}
T_k &= \frac{1}{k+1} - \frac{1}{k+2}.
\end{align*}
Now
\begin{align*}
&\sum_{k=3}^{n} \dfrac{1}{(k+1)(k+2)} = \sum_{k=3}^n T_k \\
&= \sum_{k=3}^n \left( \frac{1}{k+1} - \frac{1}{k+2} \right) \\
&= \left( \frac{1}{4} - \frac{1}{5} \right)+ \left( \frac{1}{5} - \frac{1}{6} \right)+\left( \frac{1}{6} - \frac{1}{7} \right) \\
&\quad +...+\left( \frac{1}{n} - \frac{1}{n+1} \right)+ \left( \frac{1}{n+1} - \frac{1}{n+2} \right) \\
&=\frac{1}{4} - \frac{1}{n+2} \\
&=\frac{n+2-4}{4(n+2)} \\
&=\frac{n-2}{4(n+2)} \\
\end{align*}
Hence, the required sum $\dfrac{n-2}{4(n+2)}$.
Go to