Question 7(i-vi), Exercise 6.1
Solutions of Question 7(i-vi) of Exercise 6.1 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 7(i)
Find n, if n!(n−2)!=930,n≥2
Solution.
n!(n−2)!=930n(n−1)(n−2)!(n−2)!=930n(n−1)=930n2−n−930=0 Byusing quadratic formula, n=1±√1+4(930)2=1±612n=1+612,orn=1−612n=31,orn=−30 Since n≥2⟹n=31
Question 7(ii)
Find n, if n!(n−5)!=20⋅n!(n−3)!,n≥5
Solution.
n!(n−5)!=20⋅n!(n−3)!n!(n−5)!=20⋅n!(n−3)(n−4)(n−5)!(n−3)(n−4)=20n2−7n+12=20n2−7n−8=0n2+n−8n−8=0n(n+1)−8(n+1)=0(n+1)(n−8)=0n+1=0,orn−8=0n=−1,orn=8 Since n≥5⟹n=8
Question 7(iii)
Find n, if (n+2)!=60⋅(n−1)!
Solution.
(n+2)!=60(n−1)!(n+2)!=60(n−1)!(n+2)(n+1)n(n−1)!=60(n−1)!(n+2)(n+1)n=60(n2+3n+2)n=60n3+3n2+2n−60=0 132−60303186016200 ⟹n=3 remaining roots are imaginary.
Question 7(iv)
Find n, if (n+2)!=132⋅n!
Solution.
(n+2)!=132⋅n!(n+2)(n+1)n!=132⋅n!(n+2)(n+1)=132(n+2)(n+1)=132n2+3n−130=0n2+13n−10−130=0n(n+13)−10(n+13)=0(n+13)(n−10)=0n+13=0orn−10=0n=−1orn=10 n cannot be negative,so n=10
Question 7(v)
Find n, if (n+2)!=56⋅n!
Solution.
(n+2)!=56n!(n+2)(n+1)n!=56n!n2+3n+2=56n2+3n−54=0n2+9n−6n−54=0n(n+9)−6(n+9)=0(n+9)(n−6)=0n+9=0orn−6=0n=−9orn=6 n cannot be negative,so n=6
Question 7(vi)
Find n, if 19!+110!=n11!
Solution.
19!+110!=n11!10×119!10×11+1110!×11=n11!11011!+1111!=n11!110+1111!=n11!121=n
Go to