Question 7(i-vi), Exercise 6.1

Solutions of Question 7(i-vi) of Exercise 6.1 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Find n, if n!(n2)!=930,n2

Solution.

n!(n2)!=930n(n1)(n2)!(n2)!=930n(n1)=930n2n930=0 Byusing quadratic formula, n=1±1+4(930)2=1±612n=1+612,orn=1612n=31,orn=30 Since n2n=31

Find n, if n!(n5)!=20n!(n3)!,n5

Solution.

n!(n5)!=20n!(n3)!n!(n5)!=20n!(n3)(n4)(n5)!(n3)(n4)=20n27n+12=20n27n8=0n2+n8n8=0n(n+1)8(n+1)=0(n+1)(n8)=0n+1=0,orn8=0n=1,orn=8 Since n5n=8

Find n, if (n+2)!=60(n1)!

Solution.

(n+2)!=60(n1)!(n+2)!=60(n1)!(n+2)(n+1)n(n1)!=60(n1)!(n+2)(n+1)n=60(n2+3n+2)n=60n3+3n2+2n60=0 13260303186016200 n=3 remaining roots are imaginary.

Find n, if (n+2)!=132n!

Solution.

(n+2)!=132n!(n+2)(n+1)n!=132n!(n+2)(n+1)=132(n+2)(n+1)=132n2+3n130=0n2+13n10130=0n(n+13)10(n+13)=0(n+13)(n10)=0n+13=0orn10=0n=1orn=10 n cannot be negative,so n=10

Find n, if (n+2)!=56n!

Solution.

(n+2)!=56n!(n+2)(n+1)n!=56n!n2+3n+2=56n2+3n54=0n2+9n6n54=0n(n+9)6(n+9)=0(n+9)(n6)=0n+9=0orn6=0n=9orn=6 n cannot be negative,so n=6

Find n, if 19!+110!=n11!

Solution.

19!+110!=n11!10×119!10×11+1110!×11=n11!11011!+1111!=n11!110+1111!=n11!121=n