Question 7(vii-xi), Exercise 6.1
Solutions of Question 7(vii-xi) of Exercise 6.1 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 7(vii)
Find n, if n!=990⋅(n−3)!
Solution.
n!=990(n−3)!n(n−1)(n−1)(n−3)!=990(n−3)!n(n−1)(n−1)=990n3−3n2+2n−990=0
By synhetic divison
1−32−990110118899018900
n=11 as remaining roots are imaginary.
Question 7(viii)
Find n, if (n+1)!=6⋅(n−1)!
Solution.
(n+1)!=6(n−1)!(n+1)n(n−1)!=6(n−1)!n2+n−6=0n2+3n−2n−6=0n(n+3)−2(n+3)=0(n+3)(n−2)=0n+3=0orn−2=0n=−3orn=2 n cannot be negative, so n=2
Question 7(ix)
Find n, if (n+2)!(2n−1)!=(n+3)!(2n+1)!727
Solution.
(n+2)!(2n−1)!=(n+3)!(2n+1)!727(n+2)!(2n−1)!=(n+3)(n+2)!(2n+1)2n(2n−1)!7277(2n+1)2n=72(n+3)28n2+14n=72n+21628n2−58n−216=02(14n2−29n−108)=014n2−29n−108=02≠0
By using quadratic equation,
n=29±√841+604828=29±8328n=29+8328or29−8328n=11228or−5428n=4or−2714
n cannot be negative, so n=4
Question 7(x)
Find n, if (2n)!4!(2n−3)!⋅4!(n−4)!n!=52
Solution.
(2n)!4!(2n−3)!4!(n−4)!n!=52(2n)(2n−1)(2n−2)(2n−3)!4!(2n−3)!×4!(n−4)!n(n−1)(n−2)(n−3)(n−4)!=522(2n−1)(2n−2)(n−1)(n−2)(n−3)=522(2n2−3n+1)=52(n3−6n2+11n−6)2n2−3n+1=13(n3−6n2+11n−6)2n2−3n+1=13n3−78n2+143n−78)13n3−80n2+146n−79=0
By synthetic division
13−80146−791013−677913−67790
⟹n=1
Question 7(xi)
Find n, if 12(n−2)!:14!(n−4)!=2,n≥4
Solution.
12(n−2)!:14!(n−4)!=212(n−2)(n−3)(n−4)!:14!(n−4)!=24!2(n−2)(n−3)=224=4(n2−5n+6)6=n2−5n+6n2−5n=0n(n−5)=0n=5∵n≠0
Go to