Question 7(vii-xi), Exercise 6.1

Solutions of Question 7(vii-xi) of Exercise 6.1 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Find n, if n!=990(n3)!

Solution.

n!=990(n3)!n(n1)(n1)(n3)!=990(n3)!n(n1)(n1)=990n33n2+2n990=0 By synhetic divison
132990110118899018900 n=11 as remaining roots are imaginary.

Find n, if (n+1)!=6(n1)!

Solution.

(n+1)!=6(n1)!(n+1)n(n1)!=6(n1)!n2+n6=0n2+3n2n6=0n(n+3)2(n+3)=0(n+3)(n2)=0n+3=0orn2=0n=3orn=2 n cannot be negative, so n=2

Find n, if (n+2)!(2n1)!=(n+3)!(2n+1)!727

Solution.

(n+2)!(2n1)!=(n+3)!(2n+1)!727(n+2)!(2n1)!=(n+3)(n+2)!(2n+1)2n(2n1)!7277(2n+1)2n=72(n+3)28n2+14n=72n+21628n258n216=02(14n229n108)=014n229n108=020 By using quadratic equation,
n=29±841+604828=29±8328n=29+8328or298328n=11228or5428n=4or2714 n cannot be negative, so n=4

Find n, if (2n)!4!(2n3)!4!(n4)!n!=52

Solution.

(2n)!4!(2n3)!4!(n4)!n!=52(2n)(2n1)(2n2)(2n3)!4!(2n3)!×4!(n4)!n(n1)(n2)(n3)(n4)!=522(2n1)(2n2)(n1)(n2)(n3)=522(2n23n+1)=52(n36n2+11n6)2n23n+1=13(n36n2+11n6)2n23n+1=13n378n2+143n78)13n380n2+146n79=0 By synthetic division
138014679101367791367790 n=1

Find n, if 12(n2)!:14!(n4)!=2,n4

Solution.

12(n2)!:14!(n4)!=212(n2)(n3)(n4)!:14!(n4)!=24!2(n2)(n3)=224=4(n25n+6)6=n25n+6n25n=0n(n5)=0n=5n0