Question 1, Exercise 6.2

Solutions of Question 1 of Exercise 6.2 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Prove for nN: nPr=n!(nr)!

Solution.

Let us have n distinct objects and we want to arrange r of them in some order.
For first object, we have ˙n-choices
for 2nd  object, we have (n1) choices
For 3rd  object, we have (n2) choices
For rth  object, we have (n(r1) ) choices
Hence no. of possible arrangements

nPr=n(n1)(n2)(n(r1))

Multiply and divide by (nr)(nr1)3,2.1
nPr=n(n1)(n2)(n(r1))(nr)(nr1)(nr2)3.2.1(nr)(nr1)(nr2)3.2.1

=n!(nr)!

Prove for nN: nPn=nPn1

Solution.

L.H.S=npn=n!(nn)!=n!0!=n!R.H.S=nPn1=n!(n(n1))!=n!(nn+1)!=n!1!=n!1!=1L.H.S=R.H.S

Prove for nN: nPr=nn1Pr1

Solution.

R.H.S=nn1Pr1=n(n1)!((n1)(r1))!=n(n1)!(n1r+1)!=n!(nr)!=nPr= L.H.S 

Prove for nN: nPr=n1Pr+rn1Pr1

Solution.

R.H.S=n1Pr+rn1Pr1=(n1)!((n1)r)!+r(n1)!((n1)(r1))!=(n1)!(nr1)!+r(n1)!(nr)!=(n1)![1(nr1)!+r(nr)(nr1)!]=(n1)![(nr)+r(nr)(nr1)]=(n1)![n(nr)(nr1)!]=n(n1)!(nr)(nr1)!=n!(nr)!=nPr=L.H.S

Prove for nN: nPn=2nPn2

Solution.

R.H.S=2nPn2=2n!(n(n2))!=2n!(nn+2)!=2n!2!=2n!2=n!(i)L.H.S=nPn=n!(nn)!=n!0!=n!(ii) From (i) and (ii) L.H.S=R.H.S