Question 1, Exercise 6.2
Solutions of Question 1 of Exercise 6.2 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1(i)
Prove for n∈N: nPr=n!(n−r)!
Solution.
Let us have n distinct objects and we want to arrange r of them in some order.
For first object, we have ˙n-choices
for 2nd object, we have (n−1) choices
For 3rd object, we have (n−2) choices
For rth object, we have (n−(r−1) ) choices
Hence no. of possible arrangements
nPr=n(n−1)(n−2)…(n−(r−1))
Multiply and divide by (n−r)(n−r−1)…3,2.1
nPr=n(n−1)(n−2)…(n−(r−1))(n−r)(n−r−1)(n−r−2)…3.2.1(n−r)(n−r−1)(n−r−2)…3.2.1
=n!(n−r)!
Question 1(ii)
Prove for n∈N: nPn=nPn−1
Solution.
L.H.S=npn=n!(n−n)!=n!0!=n!R.H.S=nPn−1=n!(n−(n−1))!=n!(n−n+1)!=n!1!=n!∵1!=1⇒L.H.S=R.H.S
Question 1(iii)
Prove for n∈N: nPr=nn−1Pr−1
Solution.
R.H.S=nn−1Pr−1=n(n−1)!((n−1)−(r−1))!=n(n−1)!(n−1−r+1)!=n!(n−r)!=nPr= L.H.S
Question 1(iv)
Prove for n∈N: nPr=n−1Pr+rn−1Pr−1
Solution.
R.H.S=n−1Pr+rn−1Pr−1=(n−1)!((n−1)−r)!+r(n−1)!((n−1)−(r−1))!=(n−1)!(n−r−1)!+r(n−1)!(n−r)!=(n−1)![1(n−r−1)!+r(n−r)(n−r−1)!]=(n−1)![(n−r)+r(n−r)(n−r−1)]=(n−1)![n(n−r)(n−r−1)!]=n(n−1)!(n−r)(n−r−1)!=n!(n−r)!=nPr=L.H.S
Question 1(v)
Prove for n∈N: nPn=2⋅nPn−2
Solution.
R.H.S=2⋅nPn−2=2⋅n!(n−(n−2))!=2⋅n!(n−n+2)!=2⋅n!2!=2⋅n!2=n!⋯(i)L.H.S=nPn=n!(n−n)!=n!0!=n!⋯(ii) From (i) and (ii) L.H.S=R.H.S
Go to