Question 2, Exercise 6.2
Solutions of Question 2 of Exercise 6.2 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 2(i)
Find n, if: nP4=20nP2
Solution.
m(n−4)!=20⋅m(n−2)!1(n−4)!=20(n−2)(n−3)(n−4)!(n−2)(n−3)=20n2−5n+6=20n2−5n−14=0n2+2n−7n−14=0n(n+2)−7(n+2)=0(n+2)(n−7)=0(n+2)=0orn−7=0n=−2orn=7
n should be a positive integer, so n=7
Question 2(ii)
Find n, if: 2nP3=100nP2
Solution.
(2n)!(2n−3)!=100⋅n!(n−2)!(2n)(2n−1)(2n−2)(2n−3)!(2n−3)!=100⋅n(n−1)(n−2)!(n−2)!2n[4n2−4n−2n+2]=100[n2−n]8n3−12n2+4n=100n2−100n2n2−3n+1=25n−252n2−28n+26=02(n2−14n+13)=0n2−14n+13=0∵2≠0n2−14n+13=0n2−n−13n+13=0n(n−1)−13(n−1)=0(n−1)(n−13)=0n−1=0 or n−13=0n=1 or n=13 Since n≥r i.e., n≥2 so n=13
Question 2(iii)
Find n, if: 16nP3=13n+1P3
Solution.
16n!(n−3)!=13(n+1)!((n+1)−3)!16n!(n−3)!=13(n+1)n!(n−2)(n−3)!16(n−2)=13(n+1)16n−32=13n+1316n−13n−32−13=03n−45=0n=15
Question 2(iv)
Find n, if: nP5=20,nP3
Solution.
nP5=20nP3n!(n−5)!=20n!(n−3)!1(n−5)!=20(n−3)(n−4)(n−5)!(n−3)(n−4)=20n2−7n+12=20n2−7n−8=0n2+n−8n−8=0n(n+1)−8(n+1)=0(n+1)(n−8)=0n+1=0 or n−8=0n=−1 or n=8 n must be non-negative so n=8
Question 2(v)
Find n, if: 30nP6=n+2P7
Solution.
30nP6=n+2P730n!(n−6)!=(n+2)!(n−5)!30n!(n−6)!=(n+2)(n+1)n!(n−5)(n−6)!(n−5)30=(n+2)(n+1)30n−150=n2+3n+2n2−27n+152=0 By using quadratic formula n=27±√(27)2−4(152)2=27±√1212=27±112n=27+112orn=27−112n=302orn=162n=19orn=8
Question 2(vi)
Find n, if: nP5:n−1P4=6:1
Solution.
nP5:n−1P4=6:1n!(n−5)!:(n−1)!((n−1)−4)!=6:1n!(n−5)!:(n−1)!(n−5)!=6:1n(n−1)!(n−5)!:(n−1)!(n−5)!=6:1n:1=6:1
Question 2(vii)
Find n, if: nP4:n−1P3=9:1
Solution.
nP4:n−1P3=9:1n!(n−4)!:(n−1)!((n−1)−3)!=9:1n:1=9.1n=9
Question 2(viii)
Find n, if: n−1P3:n+1P3=5:12
Solution.
n−1P3:n+1P3=5:12(n−1)!((n−1)−3)!:(n+1)!((n+1)−3)!=5:12(n−1)(n−4)!:(n+1)!(n−2)!=5:12(n−1)!(n−4)!:(n+1)n(n−1)!(n−2)(n−3)(n−4)!=5:121:n(n+1)(n−2)(n−3)=5⋅121n(n+1)(n−2)(n−3)=512(n−2)(n−3)n(n+1)=51212(n−2)(n−3)=5n(n+1)12(n2−5n+6)=5(n2+n)12n2−60n+72=5n2+5n7n2−65n+72=0 By using quadratic formula n=65±√(65)2−4(7)(72)14n=65±√220914=65±4714n=65+4714,n=65−4714n=11214,n=8 n must be an integer, ⇒n=8
Question 2(ix)
Find n, if: 2n−1Pn:2n+1Pn−1=22:7
Solution.
2n−1Pn:2n+1Pn−1=22:7(2n−1)!((2n−1)−n)!:(2n+1)!((2n+1)−(n−1))!=22:7(2n−1)!(n−1)!:(2n+1)!(n+2)!=22:7(2n−1)!(n−1)!:(2n+1)2n(2n−1)!(n+2)(n+1)n(n−1)!=22:71:(2n−1)!(n−1)!:(2n+1)2n(2n−1)(n+2)(n+1)n(n+1)!=22:712(2n+1)(n+1)(n+2)=227(n+1)(n+2)2(2n+1)=2277(n+1)(n+2)=44(2n+1)7(n2+3n+2)=88n+447n2+21n+14=88n+447n2−67n−30=0 By quadratic formula n=67±√672−4(7)(−30)14=67±√532914=67±7214n=67+7214,orn=67−7214n=14014,,orn=−514n=10,−514 n must be a positive integer so n=10
Go to