Question 2, Exercise 6.2

Solutions of Question 2 of Exercise 6.2 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Find n, if: nP4=20nP2

Solution.

m(n4)!=20m(n2)!1(n4)!=20(n2)(n3)(n4)!(n2)(n3)=20n25n+6=20n25n14=0n2+2n7n14=0n(n+2)7(n+2)=0(n+2)(n7)=0(n+2)=0orn7=0n=2orn=7 n should be a positive integer, so n=7

Find n, if: 2nP3=100nP2

Solution.

(2n)!(2n3)!=100n!(n2)!(2n)(2n1)(2n2)(2n3)!(2n3)!=100n(n1)(n2)!(n2)!2n[4n24n2n+2]=100[n2n]8n312n2+4n=100n2100n2n23n+1=25n252n228n+26=02(n214n+13)=0n214n+13=020n214n+13=0n2n13n+13=0n(n1)13(n1)=0(n1)(n13)=0n1=0 or n13=0n=1 or n=13 Since nr i.e., n2 so n=13

Find n, if: 16nP3=13n+1P3

Solution.

16n!(n3)!=13(n+1)!((n+1)3)!16n!(n3)!=13(n+1)n!(n2)(n3)!16(n2)=13(n+1)16n32=13n+1316n13n3213=03n45=0n=15

Find n, if: nP5=20,nP3

Solution.

nP5=20nP3n!(n5)!=20n!(n3)!1(n5)!=20(n3)(n4)(n5)!(n3)(n4)=20n27n+12=20n27n8=0n2+n8n8=0n(n+1)8(n+1)=0(n+1)(n8)=0n+1=0 or n8=0n=1 or n=8 n must be non-negative so n=8

Find n, if: 30nP6=n+2P7

Solution.

30nP6=n+2P730n!(n6)!=(n+2)!(n5)!30n!(n6)!=(n+2)(n+1)n!(n5)(n6)!(n5)30=(n+2)(n+1)30n150=n2+3n+2n227n+152=0 By using quadratic formula n=27±(27)24(152)2=27±1212=27±112n=27+112orn=27112n=302orn=162n=19orn=8

Find n, if: nP5:n1P4=6:1

Solution.

nP5:n1P4=6:1n!(n5)!:(n1)!((n1)4)!=6:1n!(n5)!:(n1)!(n5)!=6:1n(n1)!(n5)!:(n1)!(n5)!=6:1n:1=6:1

Find n, if: nP4:n1P3=9:1

Solution.

nP4:n1P3=9:1n!(n4)!:(n1)!((n1)3)!=9:1n:1=9.1n=9

Find n, if: n1P3:n+1P3=5:12

Solution.

n1P3:n+1P3=5:12(n1)!((n1)3)!:(n+1)!((n+1)3)!=5:12(n1)(n4)!:(n+1)!(n2)!=5:12(n1)!(n4)!:(n+1)n(n1)!(n2)(n3)(n4)!=5:121:n(n+1)(n2)(n3)=5121n(n+1)(n2)(n3)=512(n2)(n3)n(n+1)=51212(n2)(n3)=5n(n+1)12(n25n+6)=5(n2+n)12n260n+72=5n2+5n7n265n+72=0 By using quadratic formula n=65±(65)24(7)(72)14n=65±220914=65±4714n=65+4714,n=654714n=11214,n=8 n must be an integer, n=8

Find n, if: 2n1Pn:2n+1Pn1=22:7

Solution.

2n1Pn:2n+1Pn1=22:7(2n1)!((2n1)n)!:(2n+1)!((2n+1)(n1))!=22:7(2n1)!(n1)!:(2n+1)!(n+2)!=22:7(2n1)!(n1)!:(2n+1)2n(2n1)!(n+2)(n+1)n(n1)!=22:71:(2n1)!(n1)!:(2n+1)2n(2n1)(n+2)(n+1)n(n+1)!=22:712(2n+1)(n+1)(n+2)=227(n+1)(n+2)2(2n+1)=2277(n+1)(n+2)=44(2n+1)7(n2+3n+2)=88n+447n2+21n+14=88n+447n267n30=0 By quadratic formula n=67±6724(7)(30)14=67±532914=67±7214n=67+7214,orn=677214n=14014,,orn=514n=10,514 n must be a positive integer so n=10