Question 4, Exercise 6.3
Solutions of Question 4 of Exercise 6.3 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 4(i)
Find n and r if: nCr−1:nCr:nCr+1=6:14:21
Solution.
n!(r−1)!(n−(r−1))!:n!r!(n−r)!:n!(r+1)!(n−(r+1))!=6:14:211(r−1)!(n−r+1)!:1r!(n−r)!:1(r+1)!(n−r−1)!=6:14:211(r−1)!(n−r+1)(n−r)(n−r−1)!:1r(r−1)!(n−r)(n−r−1)!:1(r+1)(r)(r−1)!(n−r−1)!=6:14:211(n−r+1)(n−r):1r(n−r):1(r+1)r=6:14:211(n−r+1)(n−r):1r(n−r)=6:14and1r(n−r):1(r+1)r=14:21rn−r+1=614 and r+1n−r=14217r=3(n−r+1)and3(r+1)=2(n−r)7r=3n−3r+3and3r+3=2n−2r10r−3n−3=0⋯(i)and5r−2n+3=0⋯(ii)
Solving both equations simultaneously.
Multiply (ii) by 2 and subtract from (i)
10r−3n−3=0+−10r−+4n+−6=0n−9=0
n=9put in (i)10r−3(9)−3=010r−30=0r=3010r=3
Question 4(ii)
Find n and r if: nCr−1:nCr:nCr+1=3:4:5
Solution.
nCr−1:nCr:nCr+1=3:4:5n!(r−1)!(n−(r−1))!:n!r!(n−r)!:n!(r+1)!(n−(r+1))!=3:4:51(r−1)!(n−r+1)!:1r!(n−r)!:1(r+1)!(n−r−1)!=3:4:51(n−1)!(n−r+1)(n−r)(n−r−1)!:1r(r−1)!(n−r)(n−1)!:1(r+1)(r)(r−1)!(n−r−1)!=3:4:51(n−r+1)(n−r):1r(n−r):1(r+1)r=3:4:51(n−r+1)(n−r):1r(n−r)=3:4and1r(n−r):1(r+1)r=4:5rn−r+1=34andr+1n−r=454r=3(n−r+1)and5(r+1)=4(n−r)4r=3n−3r+3and5r+5=4n−4r7r−3n−3=0⋯(i)and9r−4n+5=0⋯(ii) Multiply (i) by 4 and (ii) by 3 and subtract 28r−12n−12=0+−27r−+12n+−15=0r−27=0 r=27put in (i)7(27)−3n−3=0186−3n=0n=1863n=62
Question 4(iii)
Find n and r if: n+1Cr+1:nCr:n−1Cr−1=22:12:6
Solution.
n+1Cr+1:nCrn−1:Cr−1=22:12:6(n+1)!(r+1)!((n+1)−(r+1))!:n!r!(n−r)!:(n−1)!(r−1)!((n−1)−(r−1))!=11:6:3(n+1)!(r+1)!(n−r)!:n!r!(n−1)!:(n−1)!(r−1)!(n−r)!=11:6:3(n+1)n(n−1)!(r+1)r(r−1)!:n(n−1)!r(r−1)!:(n−1)!(r−1)!=11:6:3(n+1)r(r+1)r:rr=11:6andnr:11=6:3n+1r+1=116andnr=636(n+1)=11(r+1)and3n=6r6n+6=11r+116n−11r−5=0⋯(i)andn=2r⋯(ii)
Put (ii) in (i)
6(2r)−11r−5=012r−11r=5r=5put in (ii)n=2(5)n=10
Question 4(iv)
Find n and r if: nCr:nCr+1:nCr+2=1:2:3
Solution.
nCr:nCr+1:nCr+2=1:2:3n!r!(n−r)!:n!(r+1)!(n−(r+1))!:n!(r+2)!(n−(r+2))!=1:2:31r!(n−r)!:1(r+1)!(n−r−1)!:1(r+2)!(n−r−2)=1:2:31n(n−r)(n−r−1)(n−r−2)!:1(r+1)r(n−r−1)(n−r−2)!:1(r+2)(r+1)r(n−r−2)!=1:2:31(n−r)(n−r−1):1(r+1)(n−r−1):1(r+2)(r+1)=1:2:31(n−r)(n−r−1):1(r+1)(n−r−1)=1:2and1(r+1)(n−r−1):1(r+1)(r+2)=2:3r+1n−r=12andr+2n−r−1=232(r+1)=n−rand3(r+2)=2(n−r−1)2r+2=n−rand3r+6=2n−2r−23r−n+2=0⋯(1)and5r−2n+8=0⋯(2)
Multiply (1) by 2 and subtract from (2)
3r−n+2=0+−5r−+2n+−4=0−r+4=0
r=4put in (1)3(4)−n+2=014−n=0n=14
Go to