Question 4, Exercise 6.3

Solutions of Question 4 of Exercise 6.3 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Find n and r if: nCr1:nCr:nCr+1=6:14:21

Solution.

n!(r1)!(n(r1))!:n!r!(nr)!:n!(r+1)!(n(r+1))!=6:14:211(r1)!(nr+1)!:1r!(nr)!:1(r+1)!(nr1)!=6:14:211(r1)!(nr+1)(nr)(nr1)!:1r(r1)!(nr)(nr1)!:1(r+1)(r)(r1)!(nr1)!=6:14:211(nr+1)(nr):1r(nr):1(r+1)r=6:14:211(nr+1)(nr):1r(nr)=6:14and1r(nr):1(r+1)r=14:21rnr+1=614 and r+1nr=14217r=3(nr+1)and3(r+1)=2(nr)7r=3n3r+3and3r+3=2n2r10r3n3=0(i)and5r2n+3=0(ii)

Solving both equations simultaneously.
Multiply (ii) by 2 and subtract from (i) 10r3n3=0+10r+4n+6=0n9=0 n=9put in (i)10r3(9)3=010r30=0r=3010r=3

Find n and r if: nCr1:nCr:nCr+1=3:4:5

Solution.

nCr1:nCr:nCr+1=3:4:5n!(r1)!(n(r1))!:n!r!(nr)!:n!(r+1)!(n(r+1))!=3:4:51(r1)!(nr+1)!:1r!(nr)!:1(r+1)!(nr1)!=3:4:51(n1)!(nr+1)(nr)(nr1)!:1r(r1)!(nr)(n1)!:1(r+1)(r)(r1)!(nr1)!=3:4:51(nr+1)(nr):1r(nr):1(r+1)r=3:4:51(nr+1)(nr):1r(nr)=3:4and1r(nr):1(r+1)r=4:5rnr+1=34andr+1nr=454r=3(nr+1)and5(r+1)=4(nr)4r=3n3r+3and5r+5=4n4r7r3n3=0(i)and9r4n+5=0(ii) Multiply (i) by 4 and (ii) by 3 and subtract 28r12n12=0+27r+12n+15=0r27=0 r=27put in (i)7(27)3n3=01863n=0n=1863n=62

Find n and r if: n+1Cr+1:nCr:n1Cr1=22:12:6

Solution.

n+1Cr+1:nCrn1:Cr1=22:12:6(n+1)!(r+1)!((n+1)(r+1))!:n!r!(nr)!:(n1)!(r1)!((n1)(r1))!=11:6:3(n+1)!(r+1)!(nr)!:n!r!(n1)!:(n1)!(r1)!(nr)!=11:6:3(n+1)n(n1)!(r+1)r(r1)!:n(n1)!r(r1)!:(n1)!(r1)!=11:6:3(n+1)r(r+1)r:rr=11:6andnr:11=6:3n+1r+1=116andnr=636(n+1)=11(r+1)and3n=6r6n+6=11r+116n11r5=0(i)andn=2r(ii) Put (ii) in (i)
6(2r)11r5=012r11r=5r=5put in (ii)n=2(5)n=10

Find n and r if: nCr:nCr+1:nCr+2=1:2:3

Solution.

nCr:nCr+1:nCr+2=1:2:3n!r!(nr)!:n!(r+1)!(n(r+1))!:n!(r+2)!(n(r+2))!=1:2:31r!(nr)!:1(r+1)!(nr1)!:1(r+2)!(nr2)=1:2:31n(nr)(nr1)(nr2)!:1(r+1)r(nr1)(nr2)!:1(r+2)(r+1)r(nr2)!=1:2:31(nr)(nr1):1(r+1)(nr1):1(r+2)(r+1)=1:2:31(nr)(nr1):1(r+1)(nr1)=1:2and1(r+1)(nr1):1(r+1)(r+2)=2:3r+1nr=12andr+2nr1=232(r+1)=nrand3(r+2)=2(nr1)2r+2=nrand3r+6=2n2r23rn+2=0(1)and5r2n+8=0(2) Multiply (1) by 2 and subtract from (2)
3rn+2=0+5r+2n+4=0r+4=0 r=4put in (1)3(4)n+2=014n=0n=14