Exercise 6.1
On the following page we have given the solution of Exercise 6.1 of Mathematics 9 (Science) published by Caravan Book House, Lahore.
We have created this page and it will be updated to add new solutions occasionally. Please stay in touch with this page.
Question 1:
Find the H.C.F of the following expressions.
(i) 39x7y3z and 91x5y6z7
(ii) 102xy2z, 85x2yz and 187xyz2
Solution:
(i) 39x7y3z=13×3×x7y3z
91x5y6z7=13×7×x5y6z7
H.C.F = 13x5y3z
(ii) 102xy2z=2×3×17xy2z
85x2yz=3×17x2yz
187xyz2=11×17xyz2
H.C.F= 17xyz
Question 2
Find the H.C.F of the following expressions by factorization.
(i) x2+5x+6, x2−4x−12
(ii) x3−27, x2+6x−27, 2x2−18
(iii) x3−2x2+x, x2+2x−3, X2+3x−4
(iv) 18(x3−9x2+8x), 24(x2−3x+2)
(v) 36(3x4+5x3−2x2), 54(27x4−x)
Solution:
(i)
x2+5x+6=x2+3x+2x+6,=x(x+3)+2(x+3)=(x+3)(x+2)
x2−4x−12=x2−6x+2x−12,=x(x−6)+2(x−6)=(x−6)(x+2)
H.C.F= x+2
(ii)
x3−27=x3−33,=(x−3)(x2+3x+9)
x2+6x−27=x2+9x−3x−27,=x(x+9)−3(x+9)=(x+6)(x−3)
2x2−18=2(x2−9),=2(x2−32)=2(x+3)(x−3)
H.C.F= x−3
(iii)
x3−2x2+x=x(x2−2x+1),=x(x2−x−x+1),=x(x(x−1)−1(x−1)),=x(x−1)(x−1)
x2+2x−3=x2+3x−x−3,=x(x+3)−1(x+3)=(x+3)(x−1)
X2+3x−4=x2+4x−x−4,=x(x+4)−1(x+4)=(x+4)(x−1)
H.C.F= x−1
(iv)
18(x3−9x2+8x)=2×3×3x(x2−9x+8),=2×3×3x(x2−x−8x+8),=2×3×3x(x(x−1)−8(x−1)),=2×3×3x(x−1)(x−8)
24(x2−3x+2)=2×2×2×3(x2−x−2x+2),=2×2×2×3(x(x−1)−2(x−1)),=2×2×2×3(x−1)(x−2)
H.C.F= 6(x−1)
(v)
36(3x4+5x3−2x2)=4×9×2(3x2+5x−2),=4×9×2(3x2+6x−x−2),=4×9×2(3x(x+2)−1(x+2)),=4×9×2(x+2)(3x−1)
54(27x4−x)=2×3×9x(27x3−1),=2×3×9x((3x)3−(1)3),=2×3×9x(3x−1)(9x2+3x+1)
H.C.F= 18(3x−1)
Question 4
Find the L.C.M. of the following expressions by factorization.
(i) 39x7y3z, 91x5y6z7
(ii)102xy2z, 85x2yz , 187xyz2
Solution:
(i)
39x7y3z=3×13x7y3z,=3×13x5x2y3z
91x5y6z7=7×13x5y6z7,=7×13x5y2y3zz6
L.C.M.=(13x5y3z)(21x2y3z6)=273x(5+2)y(3+3)z(1+6)=273x7y6z7
(ii)
102xy2z=2×3×17xyyz
85x2yz=5×17xxyz
187xyz2=11×17xyzz
L.C.M.=(17xyz)(2×5×11xyz)=5610x2y2z2
Question 5
Find the L.C.M. of the following expressions by factorization.
(i) x2−25x+100, x2−x−20
(ii) x2+4x+4, x2−4,2x2+x−6
(iii) 2(x4−y4),3(x3+2x2−xy2−2y3)
(iv) 4(x4−1), 6(x3−x2−x+1)
Solution:
(i)
x2−25x+100=(x2−5x−20x+100)=(x(x−5)−20(x−5))=(x−5)(x−20)
x2−x−20=x2−5x+4x−20=x(x−5)+4(x−5)=(x−5)(x+4)
L.C.M.= (x−5)(x−20)(x+4)
(ii)
x2+4x+4=(x2+2x+2x+4)=(x(x+2)+2(x+2))=(x+2)(x+2)
x2−4=(x−2)(x+2)
2x2+x−6=(2x2+4x−3x−6)=(2x(x+2)−3(x+2))=(x+2)(2x−3)
L.C.M.= (x+2)2(x−2)(2x−3)
(iii)
2(x4−y4)=2((x2)2−(y2)2)=2((x2−y2)(x2+y2))=2(x−y)(x+y)(x2+y2)
3(x3+2x2−xy2−2y3)=3(x2(x+2y)−y2(x+2y))=3(x+2y)(x2−y2)=3(x+2y)(x−y)(x+y)
L.C.M.=2×3(x+y)(x−y)(x+2y)(x2+y2)=6(x4−y4)(x+2y)
(iv)
4(x4−1)=2×2((x2)2−(12)2)=2×2((x2−1)(x2+1))=2×2(x−1)(x+1)(x2+1)
6(x3−x2−x+1)=2×3(x2(x−1)−1(x−1))=2×3(x−1)(x2−1)=2×3(x−1)2(x+1)
L.C.M.=2×2×3(x+1)(x−1)(x−1)(x2+1)=12(x4−1)(x−1)
Question 6
For what value of k is (x+4) the H.C.F. of x2+x−(2k+2) and 2x2+kx−12 ?
Solution:
(x+4) will divide completely x2+x−(2k+2) and 2x2+kx−12.
p(x)=x2+x−2k−2
put x=−4
p(−4)=(−4)2+(−4)−2k−2=16−4−2k−2=10−2k=R
R must be zero.
therefore 10−2k=0
−2k=−10
k=5
q(x)=2x2+kx−12
put x=5
q(−4)=2(−4)2−4k−12=32−4k−12=20−4k=R
R must be zero.
20−4k=0
−4k=−20
k=5
Question 7
If (x+3)(x−2) is the H.C.F. of p(x)=(x+3)(2x2−3x+k) and q(x)=(x−2)(3x2+7x−l), Find k and l.
Solution:
(x+3)(x−2) will divide completely p(x) and q(x).
p(x)=(x+3)(2x2−3x+k)
put x=2
p(2)=(2+3)(2(2)2−3(2)+k)=5(8−6+k)=5(2+k)=R
R must be zero.
therefore 5(2+k)=0
2+k=0
k=−2
q(x)=(x−2)(3x2+7x−l)
(x+3)(x−2) will divide completely q(x).
put x=−3
q(−3)=(−3−2)(3(−3)2+7(−3)−l)=(−5)(27−21−2l)=(−5)(6−l)=R
R must be zero.
(−5)(6−l)=0
6−l=0
l=6
Question 8
The L.C.M. and H.C.F. of two polynomials p(x) and 2(x4−1) and (x+1)(x2+1) respectively. If p(x)=x3+x2+x+1, find q(x) are
Solution:
We know P(x)×q(x)=L.C.M×H.C.F.
x3+x2+x+1×q(x)=2(x4−1)(x+1)(x2+1)
q(x)=2(x4−1)(x+1)(x2+1)x3+x2+x+1=2(x4−1)(x+1)(x2+1)x2(x+1)+1(x+1)=2(x4−1)(x+1)(x2+1)(x+1)(x2+1)=2(x4−1)
Question 9
Let p(x)=10(x2−9)(x2−3x+2) and q(x)=10x(x+3)(x−1)2. If the H.C.F. of p(x) , q(x) is 10(x+3)(x−1), find their L.C.M.
Solution:
We know P(x)×q(x)=L.C.M×H.C.F.
10(x+3)(x−1)×q(x)=10(x2−9)(x2−3x+2)10x(x+3)(x−1)2
q(x)=10(x2−9)(x2−3x+2)10x(x+3)(x−1)210(x+3)(x−1)=(x2−9)(x2−3x+2)10x(x−1)=10x(x2−9)(x−1)(x2−3x+2)=10x(x2−9)(x−1)(x2−2x−x+2)=10x(x2−9)(x−1)(x(x−2)−1(x−2))=10x(x2−9)(x−1)(x−2)(x−1)=10x(x2−9)(x−1)2(x−2)
Question 10
Let the product of L.C.M. and H.C.F. of two polynomials be (x+3)2(x−2)(x+5). If one polynomial is (x+3)(x−2) and the second polynomial is x2+kx+15, find the value of k.
Solution:
We know L.C.M. \times H.C.F = (x+3)^2(x-2)(x+5)
p(x)=(x+3)(x−2)
q(x)=x2+kx+15
P(x)×q(x)=L.C.M×H.C.F.
(x2+kx+15)(x+3)(x−2)=(x+3)2(x−2)(x+5)
(x2+kx+15)=(x+3)2(x−2)(x+5)(x+3)(x−2)
(x2+kx+15)=(x+3)(x+5)
x2+kx+15=x2+8x+15
kx=x2+8x+15−x2−15
kx=8x
k=8