Exercise 6.1

On the following page we have given the solution of Exercise 6.1 of Mathematics 9 (Science) published by Caravan Book House, Lahore.

We have created this page and it will be updated to add new solutions occasionally. Please stay in touch with this page.

Find the H.C.F of the following expressions.
(i) 39x7y3z and 91x5y6z7
(ii) 102xy2z, 85x2yz and 187xyz2

Solution:

(i) 39x7y3z=13×3×x7y3z
91x5y6z7=13×7×x5y6z7
H.C.F = 13x5y3z

(ii) 102xy2z=2×3×17xy2z
85x2yz=3×17x2yz
187xyz2=11×17xyz2
H.C.F= 17xyz

Find the H.C.F of the following expressions by factorization.
(i) x2+5x+6, x24x12
(ii) x327, x2+6x27, 2x218
(iii) x32x2+x, x2+2x3, X2+3x4
(iv) 18(x39x2+8x), 24(x23x+2)
(v) 36(3x4+5x32x2), 54(27x4x)

Solution:

(i)

x2+5x+6=x2+3x+2x+6,=x(x+3)+2(x+3)=(x+3)(x+2)

x24x12=x26x+2x12,=x(x6)+2(x6)=(x6)(x+2)

H.C.F= x+2

(ii)

x327=x333,=(x3)(x2+3x+9)

x2+6x27=x2+9x3x27,=x(x+9)3(x+9)=(x+6)(x3)

2x218=2(x29),=2(x232)=2(x+3)(x3)

H.C.F= x3

(iii)

x32x2+x=x(x22x+1),=x(x2xx+1),=x(x(x1)1(x1)),=x(x1)(x1)

x2+2x3=x2+3xx3,=x(x+3)1(x+3)=(x+3)(x1)

X2+3x4=x2+4xx4,=x(x+4)1(x+4)=(x+4)(x1)

H.C.F= x1

(iv)

18(x39x2+8x)=2×3×3x(x29x+8),=2×3×3x(x2x8x+8),=2×3×3x(x(x1)8(x1)),=2×3×3x(x1)(x8)

24(x23x+2)=2×2×2×3(x2x2x+2),=2×2×2×3(x(x1)2(x1)),=2×2×2×3(x1)(x2)

H.C.F= 6(x1)

(v)

36(3x4+5x32x2)=4×9×2(3x2+5x2),=4×9×2(3x2+6xx2),=4×9×2(3x(x+2)1(x+2)),=4×9×2(x+2)(3x1)

54(27x4x)=2×3×9x(27x31),=2×3×9x((3x)3(1)3),=2×3×9x(3x1)(9x2+3x+1)

H.C.F= 18(3x1)

Find the L.C.M. of the following expressions by factorization.
(i) 39x7y3z, 91x5y6z7
(ii)102xy2z, 85x2yz , 187xyz2

Solution:

(i)

39x7y3z=3×13x7y3z,=3×13x5x2y3z
91x5y6z7=7×13x5y6z7,=7×13x5y2y3zz6

L.C.M.=(13x5y3z)(21x2y3z6)=273x(5+2)y(3+3)z(1+6)=273x7y6z7

(ii)

102xy2z=2×3×17xyyz
85x2yz=5×17xxyz
187xyz2=11×17xyzz

L.C.M.=(17xyz)(2×5×11xyz)=5610x2y2z2

Find the L.C.M. of the following expressions by factorization.
(i) x225x+100, x2x20
(ii) x2+4x+4, x24,2x2+x6
(iii) 2(x4y4),3(x3+2x2xy22y3)
(iv) 4(x41), 6(x3x2x+1)

Solution:

(i)

x225x+100=(x25x20x+100)=(x(x5)20(x5))=(x5)(x20)

x2x20=x25x+4x20=x(x5)+4(x5)=(x5)(x+4)

L.C.M.= (x5)(x20)(x+4)

(ii)

x2+4x+4=(x2+2x+2x+4)=(x(x+2)+2(x+2))=(x+2)(x+2)

x24=(x2)(x+2)

2x2+x6=(2x2+4x3x6)=(2x(x+2)3(x+2))=(x+2)(2x3)

L.C.M.= (x+2)2(x2)(2x3)

(iii)

2(x4y4)=2((x2)2(y2)2)=2((x2y2)(x2+y2))=2(xy)(x+y)(x2+y2)

3(x3+2x2xy22y3)=3(x2(x+2y)y2(x+2y))=3(x+2y)(x2y2)=3(x+2y)(xy)(x+y)

L.C.M.=2×3(x+y)(xy)(x+2y)(x2+y2)=6(x4y4)(x+2y)

(iv)

4(x41)=2×2((x2)2(12)2)=2×2((x21)(x2+1))=2×2(x1)(x+1)(x2+1)

6(x3x2x+1)=2×3(x2(x1)1(x1))=2×3(x1)(x21)=2×3(x1)2(x+1)

L.C.M.=2×2×3(x+1)(x1)(x1)(x2+1)=12(x41)(x1)

For what value of k is (x+4) the H.C.F. of x2+x(2k+2) and 2x2+kx12 ?

Solution:

(x+4) will divide completely x2+x(2k+2) and 2x2+kx12.

p(x)=x2+x2k2

put x=4

p(4)=(4)2+(4)2k2=1642k2=102k=R

R must be zero.

therefore 102k=0

2k=10

k=5

q(x)=2x2+kx12

put x=5

q(4)=2(4)24k12=324k12=204k=R

R must be zero.

204k=0

4k=20

k=5

If (x+3)(x2) is the H.C.F. of p(x)=(x+3)(2x23x+k) and q(x)=(x2)(3x2+7xl), Find k and l.

Solution:

(x+3)(x2) will divide completely p(x) and q(x).

p(x)=(x+3)(2x23x+k)

put x=2

p(2)=(2+3)(2(2)23(2)+k)=5(86+k)=5(2+k)=R

R must be zero.

therefore 5(2+k)=0

2+k=0

k=2

q(x)=(x2)(3x2+7xl)

(x+3)(x2) will divide completely q(x).

put x=3

q(3)=(32)(3(3)2+7(3)l)=(5)(27212l)=(5)(6l)=R

R must be zero.

(5)(6l)=0

6l=0

l=6

The L.C.M. and H.C.F. of two polynomials p(x) and 2(x41) and (x+1)(x2+1) respectively. If p(x)=x3+x2+x+1, find q(x) are

Solution:

We know P(x)×q(x)=L.C.M×H.C.F.

x3+x2+x+1×q(x)=2(x41)(x+1)(x2+1)

q(x)=2(x41)(x+1)(x2+1)x3+x2+x+1=2(x41)(x+1)(x2+1)x2(x+1)+1(x+1)=2(x41)(x+1)(x2+1)(x+1)(x2+1)=2(x41)

Let p(x)=10(x29)(x23x+2) and q(x)=10x(x+3)(x1)2. If the H.C.F. of p(x) , q(x) is 10(x+3)(x1), find their L.C.M.

Solution:

We know P(x)×q(x)=L.C.M×H.C.F.

10(x+3)(x1)×q(x)=10(x29)(x23x+2)10x(x+3)(x1)2

q(x)=10(x29)(x23x+2)10x(x+3)(x1)210(x+3)(x1)=(x29)(x23x+2)10x(x1)=10x(x29)(x1)(x23x+2)=10x(x29)(x1)(x22xx+2)=10x(x29)(x1)(x(x2)1(x2))=10x(x29)(x1)(x2)(x1)=10x(x29)(x1)2(x2)

Let the product of L.C.M. and H.C.F. of two polynomials be (x+3)2(x2)(x+5). If one polynomial is (x+3)(x2) and the second polynomial is x2+kx+15, find the value of k.

Solution:

We know L.C.M. \times H.C.F = (x+3)^2(x-2)(x+5)

p(x)=(x+3)(x2)

q(x)=x2+kx+15

P(x)×q(x)=L.C.M×H.C.F.

(x2+kx+15)(x+3)(x2)=(x+3)2(x2)(x+5)

(x2+kx+15)=(x+3)2(x2)(x+5)(x+3)(x2)

(x2+kx+15)=(x+3)(x+5)

x2+kx+15=x2+8x+15

kx=x2+8x+15x215

kx=8x

k=8