Question 3 and 4, Exercise 4.8

Solutions of Question 3 and 4 of Exercise 4.8 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Using the method of difference, find the sum of the series: 1+4+13+40+121+ to n term.

Solution. Let Sn=1+4+13+40+121++Tn Also Sn=1+4+13+40++Tn1+Tn. Subtracting the second expression from the first expression, we have SnSn=1+4+13+40+121++Tn(1+4+13+40++Tn1+Tn) 0=1+(41)+(134)+(4013)+(12140)++(TnTn1)Tn.0=1+(3+9+27+81+ up to (n1) terms )Tn Then Tn=1+(3+9+27+81+ up to (n1) terms )=1+3(3n11)31(Sn=a(rn1)r1)=1+3n32=2+3n32=3n12. Thus, the kth term of the series: Tk=3k12. Now taking the sum, we get Sn=nk=1Tk=nk=13k12=12(nk=13knk=11)=12((3+32+33++3n)n)=12(3(3n1)31n)=12(3n+132n)=14(3n+132n). Hence, the sum of the given series is 14(3n+132n).

Using the method of difference, find the sum of the series: 1+2+4+7+11+16+ to n term.

Solution.

Let Sn=1+2+4+7++Tn Also Sn=1+2+4+7++Tn1+Tn. Subtracting the second expression from the first expression, we have SnSn=1+2+4+7++Tn(1+2+4+7++Tn1+Tn) 0=1+(21)+(42)+(74)++(TnTn1)Tn.0=1+(1+2+3+ up to (n1) terms )Tn. Then Tn=1+(1+2+3+ up to (n1) terms )=1+n12[2(1)+(n11)(1)](Sn=n2[2a+(n1)d])=1+(n1)n2.=2+n2n2.=12(n2n+2). Thus, the k-th term of the series is: Tk=12(k2k+2). Now, taking the sum, we get Sn=nk=1Tk=nk=1(12(k2k+2))=12nk=1k212nk=1k+nk=11=12(n(n+1)(2n+1)6)12(n(n+1)2)+n=n12((n+1)(2n+1)3(n+1)+12)=n12(2n2+2n+n+13n3+12)=n12(2n2+10)=n6(n2+5) Thus Sn=n6(n2+5).